Matching Items (37)
Filtering by

Clear all filters

147894-Thumbnail Image.png
Description

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum paradigm is upheld through analysis and the subsequent Aspect experiments in the years 1980-1982. No matter the complexity, any local hidden variable theory is incompatible with the formulation of standard quantum mechanics. A number of strikingly ambiguous and abstract concepts are addressed in this pursuit to deduce quantum's validity, including separability and reality. `Elements of reality' characteristic of unique spaces are defined using basis terminology and logic from EPR. The discussion draws directly from Bell's succinct 1964 Physics 1 paper as well as numerous other useful sources. The fundamental principle and insight gleaned is that quantum physics is indeed nonlocal; the door into its metaphysical and philosophical implications has long since been opened. Yet the nexus of information pertaining to Bell's inequality and EPR logic does nothing but assert the impeccable success of quantum physics' ability to describe nature.

ContributorsRapp, Sean R (Author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148208-Thumbnail Image.png
Description

Treatment log files for spot scanning proton therapy provide a record of delivery accuracy, but they also contain diagnostic information for machine performance. A collection of patient log files can identify machine performance trends over time. This facilitates the identification of machine issues before they cause downtime or degrade treatment

Treatment log files for spot scanning proton therapy provide a record of delivery accuracy, but they also contain diagnostic information for machine performance. A collection of patient log files can identify machine performance trends over time. This facilitates the identification of machine issues before they cause downtime or degrade treatment quality. At Mayo Clinic Arizona, all patient treatment logs are stored in a database. These log files contain information including the gantry, beam position, monitor units (MUs), and gantry angle. This data was analyzed to identify trends, which were then correlated with quality assurance measurements and maintenance records.

ContributorsGrayson, Madison Emily (Author) / Alarcon, Ricardo (Thesis director) / Robertson, Daniel (Committee member) / Department of Physics (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136114-Thumbnail Image.png
Description
Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the

Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the use of statistical methods in studying exotic meson candidates is outlined, describing methods and providing preliminary data on their efficacy.
ContributorsPrather, Benjamin Scott (Author) / Ritchie, Barry G. (Thesis director) / Dugger, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
136499-Thumbnail Image.png
Description
In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power consumption, which has the potential to realize ultra-low-power-consumption electronics. Recently, thermal effects in magnetic materials have attracted a great deal

In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power consumption, which has the potential to realize ultra-low-power-consumption electronics. Recently, thermal effects in magnetic materials have attracted a great deal of attention because of its potential to generate pure spin currents using a thermal gradient (∇T), such as the spin Seebeck effect. However, unlike electric potential, the exact thermal gradient direction is experimentally difficult to control, which has already caused misinterpretation of the thermal effects in Py and Py/Pt films. In this work, we show that a well-defined ∇T can be created by two thermoelectric coolers (TECs) based on Peltier effect. The ∇T as well as its sign can be accurately controlled by the driven voltage on the TECs. Using a square-wave driven potential, thermal effects of a few μV can be measured. Using this technique, we have measured the anomalous Nernst effect in magnetic Co/Py and Py/Pt layers and determined their angular dependence. The angular dependence shows the same symmetry as the anomalous Hall effect in these films.
This work has been carried out under the guidance of the author’s thesis advisor, Professor Tingyong Chen.
ContributorsSimaie, Salar (Author) / Chen, Tingyon (Thesis director) / Alizadeh, Iman (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Physics (Contributor)
Created2015-05
136997-Thumbnail Image.png
Description
In this experiment, an attempt was made to measure the index of refraction of a thin glass microscope slide, with a known thickness of 1.01 mm. A monochromatic laser with wavelength of 532nm was employed to generate the interference pattern through the use of a Michelson interferometer. The slide was

In this experiment, an attempt was made to measure the index of refraction of a thin glass microscope slide, with a known thickness of 1.01 mm. A monochromatic laser with wavelength of 532nm was employed to generate the interference pattern through the use of a Michelson interferometer. The slide was placed in the path of one of the beams. The slide could then be rotated through a series of angles, and, from the resulting changes in the interference pattern, the index of refraction of the slide could be extracted. The index of refraction was found to be 1.5±0.02.
ContributorsSwenson, Jordan (Author) / Sukharev, Maxim (Thesis director) / Bennett, Peter (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor)
Created2014-05
137466-Thumbnail Image.png
Description
Dry and steam NanoBonding™ are conceived and researched to bond Si-based surfaces, via nucleation and growth of a two-dimensional SiOxHy or hydrated SiOxHy interphase connecting surfaces at the nanoscale across macroscopic domains. The motivation is to create strong, long lasting, hermetically bonded sensors with their electronics for the development

Dry and steam NanoBonding™ are conceived and researched to bond Si-based surfaces, via nucleation and growth of a two-dimensional SiOxHy or hydrated SiOxHy interphase connecting surfaces at the nanoscale across macroscopic domains. The motivation is to create strong, long lasting, hermetically bonded sensors with their electronics for the development of an artificial pancreas and to bond solar cells to glass panels for robust photovoltaic technology. The first step in NanoBonding™ is to synthesize smooth surfaces with 20 nm wide atomic terraces via a precursor phase, ß-cSiO2 on Si(100) and oxygen-deficient SiOx on the silica using the Herbots-Atluri process and Entrepix’s spin etching. Smooth precursor phases act as geometric and chemical template to nucleate and grow macroscopic contacting domains where cross bridging occurs via arrays of molecular strands in the hydrated SiOxHy interphase. Steam pressurization is found to catalyze NanoBonding™ consistently, eliminating the need for direct mechanical compression that limits the size and shape of wafers to be bonded in turn, reducing the cost of processing. Total surface energy measurements via 3 Liquids Contact Angle Analysis (3L CAA) enables accurate quantitative analysis of the total surface energy and each of its components. 3L CAA at each step in the process shows that surface energy drops to 42.4 ± 0.6 mJ/m2 from 57.5 ± 1.4 mJ/m2 after the Herbots-Atluri clean of an “As Received” wafer. 3L CAA after steam pressurization Nanobonding™ shows almost complete elimination from 13.8 mJ/m2 ± 1.0 to 0.002 ±- 0.0002 mJ/m2 in the contribution of acceptors to the total free surface energy, and an increase from 0.2 ± .03 to 23.8± 1.6 mJ/m2 in the contribution of donors. This is consistent with an increase in hydroxylation of the ß-cSiO2 surface as a consistent precursor phase for cross-bridging. This research optimizes the use of glycerin, water, and α-bromo-naphtalene in the use of 3L CAA to effectively quantify the components of total free surface energy which helps to better understand the most consistent method for NanoBonding™.
ContributorsBennett-Kennett, Ross Buchanan (Author) / Culbertson, Robert (Thesis director) / Herbots, Nicole (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / Department of Physics (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2013-05
136488-Thumbnail Image.png
Description
We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a

We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a molecular, mesonic model, and a color-nonsinglet diquark plus antidiquark model. Then, we compare the pole-dragging effect due to these models on the masses of the f0(980), the X(3872), and the Zb(10610) and compare the effect's magnitude. We find that, while for lower masses, such as the f 0 (980), the pole-dragging effect that arises from the molecular model is more significant, the diquark model's pole-dragging effect becomes dominant at higher masses such as those of the X(3872) and the Z b (10610). This indicates that for lower threshold energies, diquark models may have less significant effects on predicted resonant masses than mesonic models, but for higher threshold energies, it is necessary to include the pole-dragging effect due to a diquark threshold in high-precision QCD calculations.
ContributorsBlitz, Samuel Harris (Author) / Richard, Lebed (Thesis director) / Comfort, Joseph (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
Description
Since the acceptance of Einstein's special theory of relativity by the scientific community, authors of science fiction have used the concept of time dilation to permit seemingly impossible feats. Simple spacecraft acceleration schemes involving time dilation have been considered by scientists and fiction writers alike. Using an original Java program

Since the acceptance of Einstein's special theory of relativity by the scientific community, authors of science fiction have used the concept of time dilation to permit seemingly impossible feats. Simple spacecraft acceleration schemes involving time dilation have been considered by scientists and fiction writers alike. Using an original Java program based upon the differential equations for special relativistic kinematics, several scenarios for round trip excursions at relativistic speeds are calculated and compared, with particular attention to energy budget and relativistic time passage in all relevant frames.
ContributorsAlfson, Jonathan William (Author) / Jacob, Richard (Thesis director) / Covatto, Carl (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
131279-Thumbnail Image.png
Description
In this project we are analyzing the diamond-titanium interface as it applies to diamond-based diode devices, including alpha particle, proton, and neutron detectors. This is done through the fabrication of an O-terminated B-doped diamond sample with a 20 Å Ti / 10 Å Pt overlayer which was then annealed and

In this project we are analyzing the diamond-titanium interface as it applies to diamond-based diode devices, including alpha particle, proton, and neutron detectors. This is done through the fabrication of an O-terminated B-doped diamond sample with a 20 Å Ti / 10 Å Pt overlayer which was then annealed and examined via X-ray photoelectron spectroscopy (XPS). It was discovered that after annealing the sample at temperatures ranging from 400 C - 900 C that TiC was not formed at any point during this experiment. Possible reasons for this include a lack of sufficient titanium in order to form TiC and over oxygenating the diamond surface before the metal was deposited.
ContributorsJohnson, Holly (Author) / Zaniewski, Anna (Thesis director) / Nemanich, Robert (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131428-Thumbnail Image.png
Description
The ASU Compact X-ray Free Electron Laser (CXFEL) is a first of its kind instrument that will illuminate the processes of life and allow scientists to create more effective treatments for disease. The dimensions of the linear accelerator (LINAC) cavities must remain stable during operation, for a change in the

The ASU Compact X-ray Free Electron Laser (CXFEL) is a first of its kind instrument that will illuminate the processes of life and allow scientists to create more effective treatments for disease. The dimensions of the linear accelerator (LINAC) cavities must remain stable during operation, for a change in the geometry alters the standing wave microwave energy resonance within the cavities and leads to reflected rather than coupled and useful microwave energy to electric field coupling. This disturbs the electron bunch acceleration dynamics critical to the ultimate generation of x-ray pulses. Cooling water must be supplied to the electron generating RF-GUN, and linear accelerator (LINAC) structures at unique flowrate and temperature setpoints that are specific to the operating mode of the CXFEL. Design specifications for the water supply to the RF-GUN and three LINACs and were made for the nominal operating mode, which adds a 3 kW heat load to the water. To maintain steady cavity dimensions, water must be supplied to each device under test at 30.0 ºC ± 0.06 ºC. The flowrate of water must be 3.5 GPM to the RF-GUN and 2.5 GPM to each of the three LINACs with ± 0.01 GPM flowrate resolution. The primary function of the Dedicated-Precision Thermal Trim Unit (D-PTTU) is to control the flowrate and temperature of water supply to each device under test. A simplified model of the system was developed to select valves that would meet our design specifications for flowrate and temperature control. After using this model for valve selection, a detailed system model was created to simulate relevant coupled-domain physics of the integrated system. The detailed system model was used to determine the critical sensitivities of the system and will be used to optimize the performance of the system in the future. Before the detailed system model can be verified and tuned with experiments, the sensors were calibrated in an ice-bath to ensure the sensors measure accurate and precise values. During initial testing, the D-PTTU was able to achieve ± 0.02 ºC temperature resolution, which exceeds the design specification by a factor of three.
ContributorsGardeck, Alex John (Author) / Holl, Mark (Thesis director) / Smith, Dean (Committee member) / Department of Physics (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05