Matching Items (14)
Filtering by

Clear all filters

Description

Soiled: An Environmental Podcast is a six episode series where common environmental topics are discussed and misconceptions surrounding these topics are debunked.

ContributorsJones, Cassity Rachelle (Co-author) / Kuta, Tiffany (Co-author) / Turner, Natalie (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148056-Thumbnail Image.png
Description

A large section of United States citizens live far away from supermarkets and do not have an easy way to get to one. This portion of the population lives in an area called a food desert. Food deserts are geographic areas in which access to affordable, healthy food, such as

A large section of United States citizens live far away from supermarkets and do not have an easy way to get to one. This portion of the population lives in an area called a food desert. Food deserts are geographic areas in which access to affordable, healthy food, such as fresh produce, is limited or completely nonexistent due to the absence of convenient grocery stores. Individuals living in food deserts are left to rely on convenience store snacks and fast food for their meals because they do not have access to a grocery store with fresh produce in their area. Unhealthy foods also lead to health issues, as people living in food deserts are typically at a higher risk of diet-related conditions, such as obesity, diabetes, and cardiovascular disease. Harvest, a sustainable farming network, is a smartphone application that teaches and guides people living in small spaces through the process of growing fresh, nutritious produce in their own homes. The app will guide users through the entire process of gardening, from seed to harvest. Harvest would give individuals living in food deserts an opportunity to access fresh produce that they currently can’t access. An overwhelming response based on our user discussion and market analysis revealed that our platform was in demand. Development of a target market, brand guide, and full-lifecycle were beneficial during the second semester as Harvest moved forward. Through the development of a website, social media platform, and smartphone application, Harvest grew traction for our platform. Our social media accounts saw a 1700% growth rate, and this wider audience was able to provide helpful feedback.

ContributorsTobey, Anna Elisabeth (Co-author) / Raimondo, Felix (Co-author) / Balamut, Hannah (Co-author) / Byrne, Jared (Thesis director) / Givens, Jessica (Committee member) / Satpathy, Asish (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137652-Thumbnail Image.png
Description
With the overall health of the environment rapidly declining \u2014 mostly due to human behaviors, solving the problem of nature deficit disorder and getting more children interested and aware of nature could be paramount to improving the environmental health of our planet. In this study, the relationship between children's learning

With the overall health of the environment rapidly declining \u2014 mostly due to human behaviors, solving the problem of nature deficit disorder and getting more children interested and aware of nature could be paramount to improving the environmental health of our planet. In this study, the relationship between children's learning and emotion is explored. Pre- and post-tests were given to children attending a week-long summer freshwater ecology camp; their knowledge of and emotional connection to different ecological concepts were measured. Two separate ecosystems were tested \u2014 a freshwater ecosystem that was taught over the course of the week, and a marine ecosystem for comparison. Increases in knowledge and emotion were seen in every freshwater ecosystem concept. Additionally, the knowledge and emotion scores were correlated, suggesting a positive relationship between them. The marine ecosystem did not show improvements in concrete knowledge, but showed increases in abstract learning, indicating that the abstract concepts learned about the freshwater ecosystem were able to transfer to the marine. Overall results show the ability of a hands-on learning experience to foster an emotional connection between a child and the subject matter. However, long-term studies are needed to track the relationship between children and their knowledge of and emotional connection to the subject matter.
ContributorsMossler, Max Vaughn (Author) / Pearson, David (Thesis director) / Smith, Andrew (Committee member) / Berkowitz, Alan (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor)
Created2013-05
136890-Thumbnail Image.png
Description
Protein is an essential macronutrient in the human diet, but the source of this protein has both human health and environmental impacts. Health complications can result from protein deficiency, but the practices by which protein sources are raised, grown, or harvested have environmental consequences, potentially reducing biodiversity, essential habitat, and

Protein is an essential macronutrient in the human diet, but the source of this protein has both human health and environmental impacts. Health complications can result from protein deficiency, but the practices by which protein sources are raised, grown, or harvested have environmental consequences, potentially reducing biodiversity, essential habitat, and crucial stocks of natural resources. Terrestrial cultivation encroaches on natural habitats and consumes resources inefficiently, while overfishing has greatly depleted wild fishery stocks. These environmental factors, along with concerns about nutrients, contaminants and the ethics of animal protein has led to confusion about weighing the risks and benefits associated with alternative sources of protein. Providing consumers \u2014 and policy makers \u2014 with a comprehensive account of major protein sources and their impacts in an understandable form is crucial to reducing environmental degradation and improving human health. Here I provide a general framework to compare the health and environmental impacts of livestock, seafood, and plant protein, and illustrate the application of this framework with case studies for each of these categories.
ContributorsGeren, Sarah Lindsey (Author) / Gerber, Leah (Thesis director) / Smith, Andrew (Committee member) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
132338-Thumbnail Image.png
Description
The objective of this study was to evaluate sustainability knowledge and practices in place at university-associated food pantries across the United States. A survey was sent to university- associated food pantries and responses were collected at a rate of 25% (n=84 of 326) to assess the knowledge and practices of

The objective of this study was to evaluate sustainability knowledge and practices in place at university-associated food pantries across the United States. A survey was sent to university- associated food pantries and responses were collected at a rate of 25% (n=84 of 326) to assess the knowledge and practices of this topic. The pantries surveyed were chosen solely based on ability to contact through email (emails were retrieved from online sources) and about 50% of the 680 university-associated pantries in the United States were sent the survey. The data was analyzed by quantifying the qualitative responses to the 9 sustainability- rated questions addressing zero- waste practice, barriers to offering sustainably sourced foods, types of sustainable donations, desire for sustainable products, and client demand for sustainable products and practices were posed to pantries. Results from this study provided insight into awareness of sustainability in these pantries and also assessed what sustainability practices are already being practiced by these pantries. Among those surveyed, a low percentage of university-associated pantries actually provide sustainably sourced foods (9.5%), but given the choice about a third (38.1%) would choose to offer these foods. It was reported that availability and cost were perceived as main barriers to providing sustainably sourced foods and that a small proportion of pantries teach their clients about zero waste practices, compost, and recycling. There is little client concern about this issue. Most pantries reported recycling more often than composting and also reported participating in some zero-waste practices. These results are unique to this study as not much research has been done in this area to assess environmental sustainability awareness in university-associated food pantries. Further research is required to further evaluate pantries across the nation as this sample size is approximately 12% of all university- associated pantries in the United States.
ContributorsCrowe, Alexandra B (Author) / Bruening, Meredith (Thesis director) / Payne-Sturges, Devon (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135295-Thumbnail Image.png
Description
Antibiotic resistance in the modern era has reached near-epidemic levels, resulting in much more difficult treatment of previously well-managed pathogens. Previous understandings of how antibiotic resistance emerges failed to account for the function of the environment. Over the past 15 years, new research has provided a link between the environmental

Antibiotic resistance in the modern era has reached near-epidemic levels, resulting in much more difficult treatment of previously well-managed pathogens. Previous understandings of how antibiotic resistance emerges failed to account for the function of the environment. Over the past 15 years, new research has provided a link between the environmental and clinical spheres of antibiotic use. This data suggests that environmental bacteria, particularly those found in livestock farming ecosystems, may significantly contribute to the overall flow of antibiotic resistance genes into human populations. The main force behind this is the utilization of antibiotics as growth promoters in animal feed supplements, seeding individual animals and their surroundings with low doses of antibiotics. Notable increases in resistance have been observed within areas that utilize these supplements, as well as in connected but unrelated systems. Waste management strategies are poorly implemented, leading to the dispersal of contaminated runoff into groundwater and riverine environments. Furthermore, existing waste processing is limited in efficacy, often releasing large amounts of unprocessed antibiotics as well as a concentrated population of resistant bacteria. Within these resistant populations, horizontal gene transfer has emerged as a vehicle for the distribution of resistance genes into other populations of bacteria. Due to the prevalence of these transfer events, a new role for the environment as a reservoir and incubator of resistance genes is proposed. Current strategies for managing the spread of antibiotic resistance are woefully inadequate, and the continued emergence of new resistance mechanisms due to negligence highlights the need for global, multidisciplinary solutions. To corral the spread of antibiotic resistance, a system is proposed that utilizes metagenomic monitoring and the enforcement of core global policies to slow the advance of resistance while waiting for novel treatment strategies to bear fruit.
ContributorsHrkal, Jacob (Author) / Gile, Gillian (Thesis director) / Shi, Yixin (Committee member) / Sarno, Analissa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
164512-Thumbnail Image.png
Description
As general awareness and concern for environmental issues has increased over time, so has the growth of environmental artwork. Artworks in this genre have been used with the intent to motivate conservation action and environmental justice action, as well as spread broader environmental awareness. Different approaches to environmental messages may

As general awareness and concern for environmental issues has increased over time, so has the growth of environmental artwork. Artworks in this genre have been used with the intent to motivate conservation action and environmental justice action, as well as spread broader environmental awareness. Different approaches to environmental messages may have varying impacts on viewers’ beliefs and attitudes related to the environment. Yet this topic is still not widely studied. Using a combination of survey and interview techniques, this thesis examines the intersection of art, ethics, and the environment by eliciting the reactions and responses of Arizona State University students to various environmental artworks. The study design presented groups of students with differing imagery, one set categorized as environmentally hopeful or positive, the other as environmentally gloomy or negative. The New Ecological Paradigm scale (NEP) was used as a measure for ethical views. After exposure to the artworks, students showed shifts in their NEP scores in both directions, and some had no change. Between positive and negative artworks, there was no significant difference in change in score on the NEP scale. The results of the thesis inspired a suggestion for a new scale to describe an emerging environmental ethic that is evidenced by the artworks, artists statements, and student reactions in this project: the Social And Ecological Paradigm (SAEP). The paradigm abbreviation includes the letter A to emphasize the importance of considering both the social and ecological implications of human activity. This mindset addresses environmental justice concerns, positive human interactions with the environment, and sustainable human communities. At the core, it is a basic human right to live in a healthy and safe environment, and a positive societal relationship with the environment is necessary to guarantee this right for all. Art is a way for people to connect with the environment and can give insight into the way society’s environmental ethic is ever shifting.
ContributorsCrawford-Paz Soldán, Elise (Author) / Minteer, Ben (Thesis director) / Sale, Gregory (Committee member) / Barrett, The Honors College (Contributor) / School of Art (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description
The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions. When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.
ContributorsZdrale, Gabriel (Author) / Mahant, Akhil (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
Description
Climate change is a well-known global threat to societal systems; however, its effects on the health of individuals are often less evident. Physicians who aim to properly treat patients holistically must be educated on the various forms of illness and disease projected to be exacerbated by climate change. Without this

Climate change is a well-known global threat to societal systems; however, its effects on the health of individuals are often less evident. Physicians who aim to properly treat patients holistically must be educated on the various forms of illness and disease projected to be exacerbated by climate change. Without this necessary climate education, physicians run the risk of being unable to fulfill the most sacred charge of the Hippocratic oath: Do No Harm. To ensure that physicians moving forward are prepared to face this new global health threat, the prevalence of climate change in current medical school curricula must be examined. Content analysis of publicly available medical school curricula in the Southwest U.S. was done using ChatGPT to track the frequency of climate health search terms. Medical school curricula analyzed included mandatory degree programs as well as optional dual degree programs or pathways for medical student education. Researchers found that medical schools within the Southwest region of the United States are not sufficiently preparing students to mitigate the regional effects of climate change on the health of patients. Mandatory medical degree curriculum does not sufficiently educate on climate health issues, nor is it present in Utah, New Mexico, or Colorado. Optional degrees and pathways are available to medical students to enroll in and may be sufficient to educate a medical student, but are not enticing enough to sufficiently educate all medical students. Some medical schools have recently conducted revisals of their mandatory curriculum and still show a lack of education available about climate health issues. The lack of educational resources for future providers could lead to detrimental health outcomes for patients, and medical schools in development should take the lead in educating their students about climate health issues.
ContributorsJamieson, Ann (Author) / Gutierrez, Sean (Co-author) / Vanos, Jennifer (Thesis director) / Lobo, Jose (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2023-12