Matching Items (3)
Filtering by

Clear all filters

151301-Thumbnail Image.png
Description
Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as

Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as indium, gallium and aluminum. The solubility of those dopant elements in ZnO is still debatable; but, it is necessary to find alternative conducting materials when their form is film or nanostructure for display devices. This is a consequence of the ever increasing price of indium. In addition, a new generation solar cell (nanostructured or hybrid photovoltaics) requires compatible materials which are capable of free standing on substrates without seed or buffer layers and have the ability introduce electrons or holes pathway without blocking towards electrodes. The nanostructures for solar cells using inorganic materials such as silicon (Si), titanium oxide (TiO2), and ZnO have been an interesting topic for research in solar cell community in order to overcome the limitation of efficiency for organic solar cells. This dissertation is a study of the rational solution-based synthesis of 1-dimentional ZnO nanomaterial and its solar cell applications. These results have implications in cost effective and uniform nanomanufacturing for the next generation solar cells application by controlling growth condition and by doping transition metal element in solution.
ContributorsChoi, Hyung Woo (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Theodore, N. David (Committee member) / Arizona State University (Publisher)
Created2012
151249-Thumbnail Image.png
Description
As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an

As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.
ContributorsCavendish, Rio (Author) / Crozier, Peter (Thesis advisor) / Adams, James (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
149572-Thumbnail Image.png
Description
Transparent conductive oxides (TCOs) are used as electrodes for a number of optoelectronic devices including solar cells. Because of its superior transparent and conductive properties, indium (In) tin (Sn) oxide (ITO) has long been at the forefront for TCO research activities and high-volume product applications. However, given the

Transparent conductive oxides (TCOs) are used as electrodes for a number of optoelectronic devices including solar cells. Because of its superior transparent and conductive properties, indium (In) tin (Sn) oxide (ITO) has long been at the forefront for TCO research activities and high-volume product applications. However, given the limited supply of In and potential toxicity of Sn-based compounds, attention has shifted to alternative TCOs like ZnO doped with group-III elements such as Ga and Al. Employing a variety of deposition techniques, many research groups are striving to achieve resistivities below 1E-4 ohm-cm with transmittance approaching the theoretical limit over a wide spectral range. In this work, Ga-doped ZnO is deposited using pulsed laser deposition (PLD). Material properties of the films are characterized using a number of techniques. For deposition in oxygen at pressures >1 mTorr, post-deposition annealing in forming gas (FG) is required to improve conductivity. At these higher oxygen pressures, thermodynamic analysis coupled with a study using the Hall effect measurements and photoluminescence spectroscopy suggest that conductivity is limited by oxygen-related acceptor-like defects in the grains that compensate donors, effectively reducing the net carrier concentration and creating scattering centers that reduce electron mobility. Oxygen is also responsible for further suppression of conductivity by forming insulative metal oxide regions at the grain edges and oxygen-related electron traps at the grain boundaries. The hydrogen component in the FG is thought to passivate the intra-grain acceptor-like defects and improve carrier transport across these grain boundaries. Given this deleterious effect of oxygen on conductivity, depositions are performed in pure argon (Ar), i.e., the only oxygen species in the growth ambient are those ejected directly from the PLD solid source target. Ga-doped ZnO deposited in Ar at 200 °C and 10 mTorr have resistivities of 1.8E-4 ohm-cm without the need for post deposition annealing. Average transmittance of the Ga-doped films is 93% over the visible and near infrared (IR) spectral regions, but free carrier absorption is a limiting factor further into the IR. After annealing in FG at 500 °C, a 300 nm Ar film has a Haacke figure of merit of 6.61E-2 sq. ohm.
ContributorsScott, Robin Charis (Author) / Zhang, Yong Hang (Thesis advisor) / Alford, Terry (Committee member) / Krause, Stephen (Committee member) / Leedy, Kevin (Committee member) / Arizona State University (Publisher)
Created2011