Matching Items (7)
Filtering by

Clear all filters

152543-Thumbnail Image.png
Description
The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage

The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage SST is analyzed and applied. A simplified average model of the three-stage SST that is suitable for simulation in real time digital simulator (RTDS) has been developed in this study. The model is also useful for general time-domain power system analysis and simulation. The proposed simplified av-erage model has been validated in MATLAB and PLECS. The accuracy of the model has been verified through comparison with the cycle-by-cycle average (CCA) model and de-tailed switching model. These models are also implemented in PSCAD, and a special strategy to implement the phase shift modulation has been proposed to enable the switching model simulation in PSCAD. The implementation of the CHIL test environment of the SST in RTDS is described in this report. The parameter setup of the model has been discussed in detail. One of the dif-ficulties is the choice of the damping factor, which is revealed in this paper. Also the grounding of the system has large impact on the RTDS simulation. Another problem is that the performance of the system is highly dependent on the switch parameters such as voltage and current ratings. Finally, the functionalities of the SST have been realized on the platform. The distributed energy storage interface power injection and reverse power flow have been validated. Some limitations are noticed and discussed through the simulation on RTDS.
ContributorsJiang, Youyuan (Author) / Ayyanar, Raja (Thesis advisor) / Holbert, Keith E. (Committee member) / Chowdhury, Srabanti (Committee member) / Arizona State University (Publisher)
Created2014
156413-Thumbnail Image.png
Description
Li-ion batteries are being used on a large scale varying from consumer electronics to electric vehicles. The key to efficient use of batteries is implementing a well-developed battery management system. Also, there is an opportunity for research for improving the battery performance in terms of size and capacity. For all

Li-ion batteries are being used on a large scale varying from consumer electronics to electric vehicles. The key to efficient use of batteries is implementing a well-developed battery management system. Also, there is an opportunity for research for improving the battery performance in terms of size and capacity. For all this it is imperative to develop Li-ion cell model that replicate the performance of a physical cell unit. This report discusses a dual polarization cell model and a battery management system implemented to control the operation of the battery. The Li-ion cell is modelled, and the performance is observed in PLECS environment.

The main aspect of this report studies the viability of Li-ion battery application in Battery Energy Storage System (BESS) in Modular multilevel converter (MMC). MMC-based BESS is a promising solution for grid-level battery energy storage to accelerate utilization and integration of intermittent renewable energy resources, i.e., solar and wind energy. When the battery units are directly integrated in submodules (SMs) without dc-dc interfaced converters, this configuration provides highest system efficiency and lowest cost. However, the lifetime of battery will be affected by the low-frequency components contained in arm currents, which has not been thoroughly investigated. This paper investigates impact of various low-frequency arm-current ripples on lifetime of Li-ion battery cells and evaluate performance of battery charging and discharging in an MMC-BESS without dc-dc interfaced converters.
ContributorsPuranik, Ishaan (Author) / Qin, Jiangchao (Thesis advisor) / Karady, George G. (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2018
156416-Thumbnail Image.png
Description
ABSTRACT

Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully organic (PCDTBT:PC70BM), for integration

ABSTRACT

Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully organic (PCDTBT:PC70BM), for integration with electrochromic stacks.

Sputtered ZnO (2% Mn) films on ITO, with transparency in the visible range, were used to fabricate metal-semiconductor (MS), metal-insulator-semiconductor (MIS), and p-i-n heterojunction devices, and their photovoltaic conversion under ultraviolet (UV) illumination was evaluated with and without oxygen plasma-treated surface electrodes (Au, Ag, Al, and Ti/Ag). The MS Schottky parameters were fitted against the generalized Bardeen model to obtain the density of interface states (Dit ≈ 8.0×1011 eV−1cm−2) and neutral level (Eo ≈ -5.2 eV). These devices exhibited photoconductive behavior at λ = 365 nm, and low-noise Ag-ZnO detectors exhibited responsivity (R) and photoconductive gain (G) of 1.93×10−4 A/W and 6.57×10−4, respectively. Confirmed via matched-pair analysis, post-metallization, oxygen plasma treatment of Ag and Ti/Ag electrodes resulted in increased Schottky barrier heights, which maximized with a 2 nm SiO2 electron blocking layer (EBL), coupled with the suppression of recombination at the metal/semiconductor interface and blocking of majority carriers. For interdigitated devices under monochromatic UV-C illumination, the open-circuit voltage (Voc) was 1.2 V and short circuit current density (Jsc), due to minority carrier tunneling, was 0.68 mA/cm2.

A fully organic bulk heterojunction photovoltaic device, composed of poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyli2’,1’,3’-benzothiadiazole)]:phenyl-C71-butyric-acidmethyl (PCDTBT:PC70BM), with corresponding electron and hole transport layers, i.e., LiF with Al contact and conducting
on-conducting (nc) PEDOT:PSS (with ITO/PET or Ag nanowire/PDMS contacts; the illuminating side), respectively, was developed. The PCDTBT/PC70BM/PEDOT:PSS(nc)/ITO/PET stack exhibited the highest performance: power conversion efficiency (PCE) ≈ 3%, Voc = 0.9V, and Jsc ≈ 10-15 mA/cm2. These stacks exhibited high visible range transparency, and provided the requisite power for a switchable electrochromic stack having an inkjet-printed, optically-active layer of tungsten trioxide (WO3), peroxo-tungstic acid dihydrate, and titania (TiO2) nano-particle-based blend. The electrochromic stacks (i.e., PET/ITO/LiClO4/WO3 on ITO/PET and Ag nanowire/PDMS substrates) exhibited optical switching under external bias from the PV stack (or an electrical outlet), with 7 s coloration time, 8 s bleaching time, and 0.36-0.75 optical modulation at λ = 525 nm. The devices were paired using an Internet of Things controller that enabled wireless switching.
ContributorsAzhar, Ebraheem (Author) / Yu, Hongbin (Thesis advisor) / Dey, Sandwip (Thesis advisor) / Goryll, Michael (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
156034-Thumbnail Image.png
Description
Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire
anohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is

Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire
anohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire
anohole metamaterials which can potentially provide additional enhancement on radiative transport. On the other hand, beyond classical far-field radiative heat transfer, near-field radiation which is known of exceeding the Planck’s blackbody limit has also become a hot topic in the field.

This PhD dissertation aims to obtain a deep fundamental understanding of nanowire
anohole based metamaterials in both far-field and near-field in terms of both electrical and magnetic responses. The underlying mechanisms that can be excited by nanowire
anohole metamaterials such as electrical surface plasmon polariton, magnetic hyperbolic mode, magnetic polariton, etc., will be theoretically studied in both far-field and near-field. Furthermore, other than conventional effective medium theory which only considers the electrical response of metamaterials, the artificial magnetic response of metamaterials will also be studied through parameter retrieval of far-field optical and radiative properties for studying near-field radiative transport. Moreover, a custom-made AFM tip based metrology will be employed to experimentally study near-field radiative transfer between a plate and a sphere separated by nanometer vacuum gaps in vacuum. This transformative research will break new ground in nanoscale radiative heat transfer for various applications in energy systems, thermal management, and thermal imaging and sensing.
ContributorsChang, Jui-Yung (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Yu, Hongbin (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2017
156655-Thumbnail Image.png
Description
The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is

The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is efficiently converting solar energy into heat as solar absorbers.

This dissertation first discusses the use of gold nanowires as narrow-band selective metamaterial absorbers. An investigation into plasmonic localized heating indicated that film-coupled gold nanoparticles exhibit tunable selective absorption based on the size of the nanoparticles. By using anodized aluminum oxide templates, aluminum nanodisc narrow-band absorbers were fabricated. A metrology instrument to measure the reflectance and transmittance of micro-scale samples was also developed and used to measure the reflectance of the aluminum nanodisc absorbers (220 µm diameter area). Tuning of the resonance wavelengths of these absorbers can be achieved through changing their geometry. Broadband absorption can be achieved by using a combination of geometries for these metamaterials which would facilitate their use as solar absorbers.

Recently, solar energy harvesting has become a topic of considerable research investigation due to it being an environmentally conscious alternative to fossil fuels. The next section discusses the steady-state temperature measurement of a lab-scale multilayer solar absorber, named metafilm. A lab-scale experimental setup is developed to characterize the solar thermal performance of selective solar absorbers. Under a concentration factor of 20.3 suns, a steady-state temperature of ~500 degrees Celsius was achieved for the metafilm compared to 375 degrees Celsius for a commercial black absorber under the same conditions. Thermal durability testing showed that the metafilm could withstand up to 700 degrees Celsius in vacuum conditions and up to 400 degrees Celsius in atmospheric conditions with little degradation of its optical and radiative properties. Moreover, cost analysis of the metafilm found it to cost significantly less ($2.22 per square meter) than commercial solar coatings ($5.41-100 per square meter).

Finally, this dissertation concludes with recommendations for further studies like using these selective metamaterials and metafilms as absorbers and emitters and using the aluminum nanodiscs on glass as selective filters for photovoltaic cells to enhance solar thermophotovoltaic energy conversion.
ContributorsAlshehri, Hassan (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Rykaczewski, Konrad (Committee member) / Wang, Robert (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2018
154556-Thumbnail Image.png
Description
To date, the most popular and dominant material for commercial solar cells is

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out

of all commercial solar cells. Although the potential of crystalline-Si solar cells in

supplying energy demands is enormous, their future growth will likely be constrained

by two

To date, the most popular and dominant material for commercial solar cells is

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out

of all commercial solar cells. Although the potential of crystalline-Si solar cells in

supplying energy demands is enormous, their future growth will likely be constrained

by two major bottlenecks. The first is the high electricity input to produce

crystalline-Si solar cells and modules, and the second is the limited supply of silver

(Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching

terawatt-scale deployment, which means the electricity produced by crystalline-Si

solar cells would never fulfill a noticeable portion of our energy demands in the future.

In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al)

electroplating has been developed as an alternative metallization technique in the

fabrication of crystalline-Si solar cells. The plating is carried out in a

near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been

found that dense, adherent Al deposits with resistivity in the high 10^–6 ohm-cm range

can be reproducibly obtained directly on Si substrates and nickel seed layers. An

all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al

back electrode, has been successfully demonstrated based on commercial p-type

monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further

optimization of the cell fabrication process, in particular a suitable patterning

technique for the front silicon nitride layer, is expected to increase the efficiency of

the cell to ~18%. This shows the potential of Al electroplating in cell metallization is

promising and replacing Ag with Al as the front finger electrode is feasible.
ContributorsSun, Wen-Cheng (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016
155086-Thumbnail Image.png
Description
CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH

CdTe/MgxCd1-xTe double heterostructures (DHs) have been grown on lattice matched InSb (001) substrates using Molecular Beam Epitaxy. The MgxCd1-xTe layers, which have a wider bandgap and type-I band edge alignment with CdTe, provide sufficient carrier confinement to CdTe, so that the optical properties of CdTe can be studied. The DH samples show very strong Photoluminescence (PL) intensity, long carrier lifetimes (up to 3.6 μs) and low effective interface recombination velocity at the CdTe/MgxCd1 xTe heterointerface (~1 cm/s), indicating the high material quality. Indium has been attempted as an n-type dopant in CdTe and it is found that the carriers are 100% ionized in the doping range of 1×1016 cm-3 to 1×1018 cm-3. With decent doping levels, long minority carrier lifetime, and almost perfect surface passivation by the MgxCd1-xTe layer, the CdTe/MgxCd1-xTe DHs are applied to high efficiency CdTe solar cells. Monocrystalline CdTe solar cells with efficiency of 17.0% and a record breaking open circuit voltage of 1.096 V have been demonstrated in our group.

Mg0.13Cd0.87Te (1.7 eV), also with high material quality, has been proposed as a current matching cell to Si (1.1 eV) solar cells, which could potentially enable a tandem solar cell with high efficiency and thus lower the electricity cost. The properties of Mg0.13Cd0.87Te/Mg0.5Cd0.5Te DHs and solar cells have been investigated. Carrier lifetime as long as 0.56 μs is observed and a solar cell with 11.2% efficiency and open circuit voltage of 1.176 V is demonstrated.

The CdTe/MgxCd1-xTe DHs could also be potentially applied to luminescence refrigeration, which could be used in vibration-free space applications. Both external luminescence quantum efficiency and excitation-dependent PL measurement show that the best quality samples are almost 100% dominated by radiative recombination, and calculation shows that the internal quantum efficiency can be as high as 99.7% at the optimal injection level (1017 cm-3). External luminescence quantum efficiency of over 98% can be realized for luminescence refrigeration with the proper design of optical structures.
ContributorsZhao, Xinhao (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane (Committee member) / Holman, Zachary (Committee member) / Chowdhury, Srabanti (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2016