Matching Items (14)
Filtering by

Clear all filters

153878-Thumbnail Image.png
Description
The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply.

The recent technologies for power cable diagnosis

The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply.

The recent technologies for power cable diagnosis and temperature monitoring system are described including their intrinsic limitations for cable health assessment. Power cable fault location methods are reviewed with two main categories: off-line and on-line data based methods.

As a diagnostic and fault location approach, a new passive methodology is introduced. This methodology is based on analyzing the resonant frequencies of the transfer function between the input and output of the power cable system. The equivalent pi model is applied to the resonant frequency calculation for the selected underground power cable transmission system.

The characteristics of the resonant frequencies are studied by analytical derivations and PSCAD simulations. It is found that the variation of load magnitudes and change of positive power factors (i.e., inductive loads) do not affect resonant frequencies significantly, but there is considerable movement of resonant frequencies under change of negative power factors (i.e., capacitive loads).

Power cable fault conditions introduce new resonant frequencies in accordance with fault positions. Similar behaviors of the resonant frequencies are shown in a transformer (TR) connected power cable system with frequency shifts caused by the TR impedance.

The resonant frequencies can be extracted by frequency analysis of power signals and the inherent noise in these signals plays a key role to measure the resonant frequencies. Window functions provide an effective tool for improving resonant frequency discernment. The frequency analysis is implemented on noise laden PSCAD simulation signals and it reveals identical resonant frequency characteristics with theoretical studies.

Finally, the noise levels of real voltage and current signals, which are acquired from an operating power plant, are estimated and the resonant frequencies are extracted by applying window functions, and these results prove that the resonant frequency can be used as an assessment for the internal changes in power cable parameters such as defects and faults.
ContributorsKim, Youngdeug (Author) / Holbert, Keith Edwin (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2015
154933-Thumbnail Image.png
Description
Due to the increasing trend of electricity price for the future and the price reduction of solar electronics price led by the policy stimulus and the technological improvement, the residential distribution solar photovoltaic (PV) system’s market is prosperous. Excess energy can be sold back to the grid, however peak demand

Due to the increasing trend of electricity price for the future and the price reduction of solar electronics price led by the policy stimulus and the technological improvement, the residential distribution solar photovoltaic (PV) system’s market is prosperous. Excess energy can be sold back to the grid, however peak demand of a residential customer typically occurs in late afternoon/early evening when PV systems are not a productive. The solar PV system can provide residential customers sufficient energy during the daytime, even the exceeding energy can be sold back to the grid especially during the day with good sunlight, however, the peak demand of a regular family always appears during late afternoon and early evening which are not productive time for PV system. In this case, the PV customers only need the grid energy when other customers also need it the most. Because of the lower contribution of PV systems during times of peak demand, utilities are beginning to adjust rate structures to better align the bills paid by PV customers with the cost to the utility to serve those customers. Different rate structures include higher fixed charges, higher on-peak electricity prices, on-peak demand charges, or prices based on avoided costs. The demand charge and the on-peak energy charge significantly reduced the savings brought by the PV system. This will result in a longer the customer’s payback period. Eventually PV customers are not saving a lot in their electricity bill compare to those customers who do not own a PV system.



A battery system is a promising technology that can improve monthly bill savings since a battery can store the solar energy and the off-peak grid energy and release it later during the on-peak hours. Sponsored by Salt River Project (SRP), a smart home model consists 1.35 kW PV panels, a 7.76 kWh lithium-ion battery and an adjustable resistive load bank was built on the roof of Engineering Research Center (ERC) building. For analysis, data was scaled up by 6/1.35 times to simulate a real residential PV setup. The testing data had been continuously recorded for more than one year (Aug.2014 - Oct.2015) and a battery charging strategy was developed based on those data. The work of this thesis deals with the idea of this charging strategy and the economic benefits this charging strategy can bring to the PV customers. Part of this research work has been wrote into a conference paper which is accepted by IEEE PES General Meeting 2016. A new and larger system has been installed on the roof with 6 kW PV modules and 6 kW output integrated electronics. This project will go on and the method come up by this thesis will be tested.
ContributorsWang, Xin'an (Author) / Karady, George G. (Thesis advisor) / Smedley, Grant (Committee member) / Qin, Jiangchao (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016
152216-Thumbnail Image.png
Description
This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is

This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.
ContributorsBush, Craig R (Author) / Ayyanar, Raja (Thesis advisor) / Karam, Lina (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2013
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05