Matching Items (12)
Filtering by

Clear all filters

135418-Thumbnail Image.png
Description
Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.
ContributorsPhan, Richard Dylan (Author) / Jiao, Yang (Thesis director) / Ren, Yi (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135433-Thumbnail Image.png
Description
For our collaborative thesis we explored the US electric utility market and how the Internet of Things technology movement could capture a possible advancement of the current existing grid. Our objective of this project was to successfully understand the market trends in the utility space and identify where a semiconductor

For our collaborative thesis we explored the US electric utility market and how the Internet of Things technology movement could capture a possible advancement of the current existing grid. Our objective of this project was to successfully understand the market trends in the utility space and identify where a semiconductor manufacturing company, with a focus on IoT technology, could penetrate the market using their products. The methodology used for our research was to conduct industry interviews to formulate common trends in the utility and industrial hardware manufacturer industries. From there, we composed various strategies that The Company should explore. These strategies were backed up using qualitative reasoning and forecasted discounted cash flow and net present value analysis. We confirmed that The Company should use specific silicon microprocessors and microcontrollers that pertained to each of the four devices analytics demand. Along with a silicon strategy, our group believes that there is a strong argument for a data analytics software package by forming strategic partnerships in this space.
ContributorsLlazani, Loris (Co-author) / Ruland, Matthew (Co-author) / Medl, Jordan (Co-author) / Crowe, David (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Economics (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Hugh Downs School of Human Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137034-Thumbnail Image.png
Description
The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.
ContributorsLau, Ching Yan (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Lively, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
136927-Thumbnail Image.png
Description
The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP

The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP mixtures as well as graphene/LFP mixtures and a synthesized graphene/LFP nanocomposite. Graphene synthesis was attempted before purchasing graphene materials, and further exploration of graphene synthesis is recommended due to limitations in purchased product quality. While it was determined after extensive experimentation that the graphene/LFP nanocomposite could not be successfully synthesized according to current literature information, a mixed composite of graphene/LFP was successfully tested and found to have k = 0.23 W/m*K. This result provides a starting point for further thermal testing method development and k optimization in Li-ion battery electrode nanocomposites.
ContributorsStehlik, Daniel Wesley (Author) / Chan, Candace K. (Thesis director) / Dai, Lenore (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
135253-Thumbnail Image.png
Description
In microbial fuel cells (MFCs) the biocathode is developed as a potential alternative to chemical cathodic catalysts, which are deemed as expensive and unsustainable for applications. These cells utilize different types of microorganisms as catalysts to promote biodegradation of organic matter while simultaneously converting energy released in metabolic reactions into

In microbial fuel cells (MFCs) the biocathode is developed as a potential alternative to chemical cathodic catalysts, which are deemed as expensive and unsustainable for applications. These cells utilize different types of microorganisms as catalysts to promote biodegradation of organic matter while simultaneously converting energy released in metabolic reactions into electrical energy. Most current research have focused more on the anodic microbes, including the current generating bacteria species, anodic microbial community composition, and the mechanisms of the extracellular electron transfer. Compared to the anode, research on the microbes of the biocathode of the MFCs are very limited and are heavily focused on the role of the bacteria in the system. Thus, further understand of the mechanism of the microbial community in the biocathode will create new engineering applications for sustainable energy. Previous research conducted by Strycharz-Glaven et al. presented an electrochemical analysis of a Marinobacter-dominated biocathode communitygrown on biocathodes in sediment/seawater-based MFCs. Chronoamperometry results indicated that current densities up to -0.04 A/m2 were produced for the biocathode. Cyclic voltammetry responses indicated a midpoint potential at 0.196 V ± 0.01 V. However, the reactor design for these experiments showed that no oxygen is supplied to the electrochemical system. By incorporating an air diffusion membrane to the cathode of the reactor, chronoamperometry results have produced current density in the system up to -0.15 A/m2. Cyclic voltammetry results have also displayed a midpoint potential of 0.25 V ± 0.01 V under scan rates of 0.2 mV/s. Thus, this electrochemical setup has increased the current output of the system.
ContributorsWang, Zixuan (Author) / Torres, Cesar (Thesis director) / Hart, Steven (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131946-Thumbnail Image.png
Description
Fossil fuels are currently the main source of energy in the world’s transportation sector. They are also the primary contributor to carbon emissions in the atmosphere, leading to adverse climate effects. The objective of the following research is to increase the yield and efficiency of algal biofuel in order to

Fossil fuels are currently the main source of energy in the world’s transportation sector. They are also the primary contributor to carbon emissions in the atmosphere, leading to adverse climate effects. The objective of the following research is to increase the yield and efficiency of algal biofuel in order to establish algal-derived fuel as a competitive alternative to predominantly used fossil fuels. Using biofuel commercially will reduce the cost of production and ultimately decrease additional carbon emissions. Experiments were performed using hydrothermal liquefaction (HTL) to determine which catalyst would enhance the algal biocrude oil and result in the highest quality biofuel product, as well as to find the optimal combination of processing temperature and manure co-liquefaction of biomass ratio. For the catalytic upgrading experiments, Micractenium Immerum algae was used in conjunction with pure H2, Pt/C, MO2C, and HZSM-5 catalysts at 350℃ and 400℃, 430 psi, and a 30-minute residence time to investigate the effects of catalyst choice and temperature on the crude oil yield. While all catalysts increased the carbon content of the crude oil, it was found that using HZSM-5 at 350℃ resulted in the greatest overall yield of about 75%. However, the Pt/C catalyst increased the HHV from 34.26 MJ/kg to 43.26 MJ/kg. Cyanidioschyzon merolae (CM) algae and swine manure were utilized in the co-liquefaction experiments, in ratios (algae to swine) of 80:20, 50:50, and 20:80 at temperatures of 300℃ and 330℃. It was found that a ratio of 80:20 at 330℃ produced the highest biocrude oil yield of 29.3%. Although the 80:20 experiments had the greatest biomass conversion and best supported the deacidification of the oil product, the biocrude oil had a HHV of 33.58 MJ/kg, the lowest between the three different ratios. However, all calorific values were relatively close to each other, suggesting that both catalytic upgrading and co-liquefaction can increase the efficiency and economic viability of algal biofuel.
ContributorsMurdock, Tessa A (Author) / Deng, Shuguang (Thesis director) / Varman, Arul (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132293-Thumbnail Image.png
Description
Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and

Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and selectivity. Mixed matrix membranes (MMMs) containing two-dimensional (2D) metal-organic frameworks (MOFs) as fillers are a highly sought approach to redress this trade-off given their enhanced gas permeabilities and selectivities compared to the pure polymeric membrane. These MMMs are increasingly gaining attention by researchers due to their unique properties and wide small- and large-scale gas separation applications. However, straightforward and scalable methods for the synthesis of MOFs nanosheets have thus far been persistently elusive. This study reports the single-phase preparation, and characterization of MMMs with 2D MOFs nanosheets as fillers. The prepared MOF and the polymer matrix form the ‘dense’ MMMs which exhibit increased gas diffusion resistance, and thus improved separation abilities. The single-phase approach was more successful than the bi-phase at synthesizing the MOFs. The influence of sonication power and time on the characteristics and performance of the membranes are examined and discussed. Increasing the sonication power from 50% to 100% reduces the pore size. Additionally, the ultimate effect on the selectivity and permeance of the MMMs with different single gases is reported. Analysis of results with various gas mixers indicates further performance improvements in these MMMs could be achieved by increasing sonication time and tuning suitable membrane thicknesses. Reported results reveal that MMMs are excellent candidates for next-generation gas mixture separations, with potential applications in CO2 capture and storage, hydrogen recovery, alkene recovery from alkanes, and natural gas purification.
ContributorsNkuutu, John (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131642-Thumbnail Image.png
Description
Ionic liquids are salts with low melting temperatures that maintain their liquid form below 100 °C, or even at ambient temperature. Ionic liquids are conductive, electrochemically stable, non-volatile, and have a low vapor pressure, making them a class of excellent candidate materials for electrolytes in energy storage, electrodeposition, batteries,

Ionic liquids are salts with low melting temperatures that maintain their liquid form below 100 °C, or even at ambient temperature. Ionic liquids are conductive, electrochemically stable, non-volatile, and have a low vapor pressure, making them a class of excellent candidate materials for electrolytes in energy storage, electrodeposition, batteries, fuel cells, and supercapacitors. Due to their multiple advantages, the use of ionic liquids on Earth has been widely studied; however, further research must be done before their implementation in space. The extreme temperatures encountered during space travel and extra-terrestrial deployment have the potential to greatly affect the liquid electrolyte system. Examples of low temperature planetary bodies are the permanently shadowed sections of the moon or icy surfaces of Jupiter’s moons. Recent studies have explored the limits of glass transition temperatures for ionic liquid systems. The project is centered around the development of an ionic liquid system for a molecular electronic transducer seismometer that would be deployed on the low temperature system of Europa. For this project, molecular dynamics simulations used input intermolecular and intramolecular parameters that then simulated molecular interactions. Molecular dynamics simulations are based around the statistical mechanics of chemistry and help calculate equilibrium properties that are not easily calculated by hand. These simulations will give insight into what interactions are significant inside a ionic liquid solution. The simulations aim to create an understanding how ionic liquid electrolyte systems function at a molecular level. With this knowledge one can tune their system and its contents to adapt the systems properties to fit all environments the seismometers will experience.
ContributorsDavis, Vincent Champneys (Author) / Dai, Lenore (Thesis director) / Gliege, Marisa (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132700-Thumbnail Image.png
Description
Drilling in Section 1002 has been an ongoing debate since the region was designated as a potential area for drilling projects, pending congressional approval in 1980. In 2017, the area was officially opened up for oil and gas development through its passage in the GOP Tax Cuts and Jobs Act

Drilling in Section 1002 has been an ongoing debate since the region was designated as a potential area for drilling projects, pending congressional approval in 1980. In 2017, the area was officially opened up for oil and gas development through its passage in the GOP Tax Cuts and Jobs Act of 2017. This act requires 2 lease sales of 400,000 acres, with an allowed 2,000 acre physical footprint (not including pipelines, ice roads, or gravel mines). Using Social-Life Cycle Assessment methodology to assess the process of oil extraction in Section 1002, significant benefits and drawbacks of drilling in this region, with economic, cultural, and social impacts ranging from the local level to the state level to the national level were identified.

Stakeholders impacted by oil development in the Section 1002 region include the Kaktovik community who lives within the Program Area, the Gwich’in people who live south of ANWR, the corporations who will be leasing the land, as well as the employees who will be working on the projects. These stakeholders share similar values and interests, however, when it comes down to the attainment of these values, there are significant differences in opinion. This debate comes down specifically to the desire to ensure stability for one’s family and community, as this means 2 different things to the majority stakeholders on this issue: The Inupiaq and the Gwich’in. The Inupiaq ,who live in Kaktovik specifically ,are particularly keen on the idea of drilling in the Section 1002 region, because the revenues and opportunities that come with the oil and gas development provide access to better standards of living and a more westernized way of life. The Gwich’in, however, value their relationship to the land and the caribou that are at risk of significant change. These 2 groups are critical to the debate, but the state and federal governments have the final say, and a financial incentive to move forward with the lease sales.

Utilizing the S-LCA framework, life cycle impacts of drilling on society are found using indicators that are identified and assessed using both qualitative and quantitative means. Although some conclusions are uncertain due to the forward-looking nature of this S-LCA, the Increasing/Decreasing trends can be identified and confidently attributed to the specific indicators.

Significant Results:
Significant issues this study has highlighted include the resulting impacts, both positive and negative, on the communities affected by oil and gas development in Section 1002. Significant stakeholders include the Kaktovik community, the Gwich’in people, the oil and gas workers in the state of Alaska, and the oil and gas companies themselves. The local residents are the most affected by the impacts of development, with significant issues pertaining to potential for significant lifestyle change, the increased risk of impact on subsistence species, the risks associated with pollution, and the effect on the economy through revenues and job availability.
ContributorsJunglas, Hillary L (Author) / Pasqualetti, Martin (Thesis director) / Breetz, Hanna (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05