Matching Items (11)
Filtering by

Clear all filters

153449-Thumbnail Image.png
Description
In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF) solvent which can produce a highly close packed SNS monolayer

In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF) solvent which can produce a highly close packed SNS monolayer over large silicon (Si) surface area, since DMF offers greatly improved wetting, capillary and convective forces in addition to slow solvent evaporation rate. Since the period and dimension of the surface pattern can be conveniently changed and controlled by introducing a desired size of SNS, and additional SNS size reduction with dry etching process, using SNS for lithography provides a highly effective nano-lithography approach for periodically arrayed nano-/micro-scale surface patterns with a desired dimension and period. Various Si nanostructures (i.e., nanopillar, nanotip, inverted pyramid, nanohole) are successfully fabricated with the SNS nano-lithography technique by using different etching technique like anisotropic alkaline solution (i.e., KOH) etching, reactive-ion etching (RIE), and metal-assisted chemical etching (MaCE).

In this research, computational optical modeling is also introduced to design the Si nanostructure, specifically nanopillars (NPs) with a desired period and dimension. The optical properties of Si NP are calculated with two different optical modeling techniques, which are the rigorous coupled wave analysis (RCWA) and finite-difference time-domain (FDTD) methods. By using these two different optical modeling techniques, the optical properties of Si NPs with different periods and dimensions have been investigated to design ideal Si NP which can be potentially used for thin c-Si solar cell applications. From the results of the computational and experimental work, it was observed that low aspect ratio Si NPs fabricated in a periodic hexagonal array can provide highly enhanced light absorption for the target spectral range (600 ~ 1100nm), which is attributed to (1) the effective confinement of resonant scattering within the Si NP and (2) increased high order diffraction of transmitted light providing an extended absorption length. From the research, therefore, it is successfully demonstrated that the nano-fabrication process with SNS lithography can offer enhanced lithographical accuracy to fabricate desired Si nanostructures which can realize enhanced light absorption for thin Si solar cell.
ContributorsChoi, JeaYoung (Author) / Honsberg, Christiana (Thesis advisor) / Alford, Terry (Thesis advisor) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
153370-Thumbnail Image.png
Description
Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H6/C3H8 separation properties of MFI zeolite membrane and CMS membrane.

MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H6/C3H8 mixture separation.

CMS membranes were synthesized by coating/pyrolysis method on mesoporous γ-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N2 and C3H6 and C3H6/C3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores.

CMS membranes demonstrate excellent C3H6/C3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.
ContributorsMa, Xiaoli (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2015
149707-Thumbnail Image.png
Description
Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.
ContributorsAnderson, Matthew Brandon (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Rege, Kaushal (Committee member) / Anderson, James (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
156416-Thumbnail Image.png
Description
ABSTRACT

Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully organic (PCDTBT:PC70BM), for integration

ABSTRACT

Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully organic (PCDTBT:PC70BM), for integration with electrochromic stacks.

Sputtered ZnO (2% Mn) films on ITO, with transparency in the visible range, were used to fabricate metal-semiconductor (MS), metal-insulator-semiconductor (MIS), and p-i-n heterojunction devices, and their photovoltaic conversion under ultraviolet (UV) illumination was evaluated with and without oxygen plasma-treated surface electrodes (Au, Ag, Al, and Ti/Ag). The MS Schottky parameters were fitted against the generalized Bardeen model to obtain the density of interface states (Dit ≈ 8.0×1011 eV−1cm−2) and neutral level (Eo ≈ -5.2 eV). These devices exhibited photoconductive behavior at λ = 365 nm, and low-noise Ag-ZnO detectors exhibited responsivity (R) and photoconductive gain (G) of 1.93×10−4 A/W and 6.57×10−4, respectively. Confirmed via matched-pair analysis, post-metallization, oxygen plasma treatment of Ag and Ti/Ag electrodes resulted in increased Schottky barrier heights, which maximized with a 2 nm SiO2 electron blocking layer (EBL), coupled with the suppression of recombination at the metal/semiconductor interface and blocking of majority carriers. For interdigitated devices under monochromatic UV-C illumination, the open-circuit voltage (Voc) was 1.2 V and short circuit current density (Jsc), due to minority carrier tunneling, was 0.68 mA/cm2.

A fully organic bulk heterojunction photovoltaic device, composed of poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyli2’,1’,3’-benzothiadiazole)]:phenyl-C71-butyric-acidmethyl (PCDTBT:PC70BM), with corresponding electron and hole transport layers, i.e., LiF with Al contact and conducting
on-conducting (nc) PEDOT:PSS (with ITO/PET or Ag nanowire/PDMS contacts; the illuminating side), respectively, was developed. The PCDTBT/PC70BM/PEDOT:PSS(nc)/ITO/PET stack exhibited the highest performance: power conversion efficiency (PCE) ≈ 3%, Voc = 0.9V, and Jsc ≈ 10-15 mA/cm2. These stacks exhibited high visible range transparency, and provided the requisite power for a switchable electrochromic stack having an inkjet-printed, optically-active layer of tungsten trioxide (WO3), peroxo-tungstic acid dihydrate, and titania (TiO2) nano-particle-based blend. The electrochromic stacks (i.e., PET/ITO/LiClO4/WO3 on ITO/PET and Ag nanowire/PDMS substrates) exhibited optical switching under external bias from the PV stack (or an electrical outlet), with 7 s coloration time, 8 s bleaching time, and 0.36-0.75 optical modulation at λ = 525 nm. The devices were paired using an Internet of Things controller that enabled wireless switching.
ContributorsAzhar, Ebraheem (Author) / Yu, Hongbin (Thesis advisor) / Dey, Sandwip (Thesis advisor) / Goryll, Michael (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
156824-Thumbnail Image.png
Description
Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via

Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via recombination of photo-generated charge carriers within advanced solar cell architectures.

As these two aspects of the solar cell framework improve, the need for a thorough analysis of their respective contribution under varying operation conditions has emerged along with challenges related to the lack of sensitivity of available characterization techniques. The main objective of my thesis work has been to establish a deep understanding of both “intrinsic” and “extrinsic” recombination processes that govern performance in high-quality silicon absorbers. By studying each recombination mechanism as a function of illumination and temperature, I strive to identify the lifetime limiting defects and propose a path to engineer the ultimate silicon solar cell.

This dissertation presents a detailed description of the experimental procedure required to deconvolute surface recombination contributions from bulk recombination contributions when performing lifetime spectroscopy analysis. This work proves that temperature- and injection-dependent lifetime spectroscopy (TIDLS) sensitivity can be extended to impurities concentrations down to 109 cm-3, orders of magnitude below any other characterization technique available today. A new method for the analysis of TIDLS data denominated Defect Parameters Contour Mapping (DPCM) is presented with the aim of providing a visual and intuitive tool to identify the lifetime limiting impurities in silicon material. Surface recombination velocity results are modelled by applying appropriate approaches from literature to our experimentally evaluated data, demonstrating for the first time their capability to interpret temperature-dependent data. In this way, several new results are obtained which solve long disputed aspects of surface passivation mechanisms. Finally, we experimentally evaluate the temperature-dependence of Auger lifetime and its impact on a theoretical intrinsically limited solar cell. These results decisively point to the need for a new Auger lifetime parameterization accounting for its temperature-dependence, which would in turn help understand the ultimate theoretical efficiency limit for a solar cell under real operation conditions.
ContributorsBernardini, Simone (Author) / Bertoni, Mariana I (Thesis advisor) / Coletti, Gianluca (Committee member) / Bowden, Stuart (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
157064-Thumbnail Image.png
Description
In order to meet climate targets, the solar photovoltaic industry must increase photovoltaic (PV) deployment and cost competitiveness over its business-as-usual trajectory. This requires more efficient PV modules that use less expensive materials, and longer operational lifetime. The work presented here approaches this challenge with a novel metallization method for

In order to meet climate targets, the solar photovoltaic industry must increase photovoltaic (PV) deployment and cost competitiveness over its business-as-usual trajectory. This requires more efficient PV modules that use less expensive materials, and longer operational lifetime. The work presented here approaches this challenge with a novel metallization method for solar PV and electronic devices.

This document outlines work completed to this end. Chapter 1 introduces the areas for cost reductions and improvements in efficiency to drive down the cost per watt of solar modules. Next, in Chapter 2, conventional and advanced metallization methods are reviewed, and our proposed solution of dispense printed reactive inks is introduced. Chapter 3 details a proof of concept study for reactive silver ink as front metallization for solar cells. Furthermore, Chapter 3 details characterization of the optical and electrical properties of reactive silver ink metallization, which is important to understanding the origins of problems related to metallization, enabling approaches to minimize power losses in full devices. Chapter 4 describes adhesion and specific contact resistance of reactive ink metallizations on silicon heterojunction solar cells. Chapter 5 compares performance of silicon heterojunction solar cells with front grids formed from reactive ink metallization and conventional, commercially available metallization. Performance and degradation throughout 1000 h of accelerated environmental exposure are described before detailing an isolated corrosion experiment for different silver-based metallizations. Finally, Chapter 6 summarizes the main contributions of this work.

The major goal of this project is to evaluate potential of a new metallization technique –high-precision dispense printing of reactive inks–to become a high efficiency replacement for solar cell metallization through optical and electrical characterization, evaluation of durability and reliability, and commercialization research. Although this work primarily describes the application of reactive silver inks as front-metallization for silicon heterojunction solar cells, the work presented here provides a framework for evaluation of reactive inks as metallization for various solar cell architectures and electronic devices.
ContributorsJeffries, April M (Author) / Bertoni, Mariana I (Thesis advisor) / Saive, Rebecca (Committee member) / Holman, Zachary (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2019
157020-Thumbnail Image.png
Description
Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will

Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will lead to realize longer module lifetime and reduced levelized cost of energy. As many as 86 failure modes are observed in PV modules [1] and series resistance increase is one of the major durability issues of all. Series resistance constitutes emitter sheet resistance, metal-semiconductor contact resistance, and resistance across the metal-solder ribbon. Solder bond degradation at the cell interconnect is one of the primary causes for increase in series resistance, which is also considered to be an invisible defect [1]. Combination of intermetallic compounds (IMC) formation during soldering and their growth due to solid state diffusion over its lifetime result in formation of weak interfaces between the solar cell and the interconnect. Thermal cycling under regular operating conditions induce thermo-mechanical fatigue over these weak interfaces resulting in contact reduction or loss. Contact reduction or loss leads to increase in series resistance which further manifests into power and fill factor loss. The degree of intermixing of metallic interfaces and contact loss depends on climatic conditions as temperature and humidity (moisture ingression into the PV module laminate) play a vital role in reaction kinetics of these layers. Modules from Arizona and Florida served as a good sample set to analyze the effects of hot and humid climatic conditions respectively. The results obtained in the current thesis quantifies the thickness of IMC formation from SEM-EDS profiles, where similar modules obtained from different climatic conditions were compared. The results indicate the thickness of the IMC and detachment degree to be growing with age and operating temperatures of the module. This can be seen in CuxSny IMC which is thicker in the case of Arizona module. The results obtained from FL

ii

aged modules also show that humidity accelerates the formation of IMC as they showed thicker AgxSny layer and weak interconnect-contact interfaces as compared to Arizona modules. It is also shown that climatic conditions have different effects on rate at which CuxSny and AgxSny intermetallic compounds are formed.
ContributorsBuddha, Viswa Sai Pavan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Alford, Terry (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018
155734-Thumbnail Image.png
Description
The automotive industry is committed to moving towards sustainable modes of transportation through electrified vehicles to improve the fuel economy with a reduced carbon footprint. In this context, battery-operated hybrid, plug-in hybrid and all-electric vehicles (EVs) are becoming commercially viable throughout the world. Lithium-ion (Li-ion) batteries with various active materials,

The automotive industry is committed to moving towards sustainable modes of transportation through electrified vehicles to improve the fuel economy with a reduced carbon footprint. In this context, battery-operated hybrid, plug-in hybrid and all-electric vehicles (EVs) are becoming commercially viable throughout the world. Lithium-ion (Li-ion) batteries with various active materials, electrolytes, and separators are currently being used for electric vehicle applications. Specifically, lithium-ion batteries with Lithium Iron Phosphate (LiFePO4 - LFP) and Lithium Nickel Manganese Cobalt Oxide (Li(NiMnCo)O2 - NMC) cathodes are being studied mainly due to higher cycle life and higher energy density values, respectively. In the present work, 26650 Li-ion batteries with LFP and NMC cathodes were evaluated for Plug-in Hybrid Electric Vehicle (PHEV) applications, using the Federal Urban Driving Schedule (FUDS) to discharge the batteries with 20 A current in simulated Arizona, USA weather conditions (50 ⁰C & <10% RH). In addition, 18650 lithium-ion batteries (LFP cathode material) were evaluated under PHEV mode with 30 A current to accelerate the ageing process, and to monitor the capacity values and material degradation. To offset the high initial cost of the batteries used in electric vehicles, second-use of these retired batteries is gaining importance, and the possibility of second-life use of these tested batteries was also examined under constant current charge/discharge cycling at 50 ⁰C.

The capacity degradation rate under the PHEV test protocol for batteries with NMC-based cathode (16% over 800 cycles) was twice the degradation compared to batteries with LFP-based cathode (8% over 800 cycles), reiterating the fact that batteries with LFP cathodes have a higher cycle life compared to other lithium battery chemistries. Also, the high frequency resistance measured by electrochemical impedance spectroscopy (EIS) was found to increase significantly with cycling, leading to power fading for both the NMC- as well as LFP-based batteries. The active materials analyzed using X-ray diffraction (XRD) showed no significant phase change in the materials after 800 PHEV cycles. For second-life tests, these batteries were subjected to a constant charge-discharge cycling procedure to analyze the capacity degradation and materials characteristics.
ContributorsVaidya, Rutvik Milind (Author) / Kannan, Arunachala Mada (Thesis advisor) / Alford, Terry (Committee member) / Wishart, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2017
149572-Thumbnail Image.png
Description
Transparent conductive oxides (TCOs) are used as electrodes for a number of optoelectronic devices including solar cells. Because of its superior transparent and conductive properties, indium (In) tin (Sn) oxide (ITO) has long been at the forefront for TCO research activities and high-volume product applications. However, given the

Transparent conductive oxides (TCOs) are used as electrodes for a number of optoelectronic devices including solar cells. Because of its superior transparent and conductive properties, indium (In) tin (Sn) oxide (ITO) has long been at the forefront for TCO research activities and high-volume product applications. However, given the limited supply of In and potential toxicity of Sn-based compounds, attention has shifted to alternative TCOs like ZnO doped with group-III elements such as Ga and Al. Employing a variety of deposition techniques, many research groups are striving to achieve resistivities below 1E-4 ohm-cm with transmittance approaching the theoretical limit over a wide spectral range. In this work, Ga-doped ZnO is deposited using pulsed laser deposition (PLD). Material properties of the films are characterized using a number of techniques. For deposition in oxygen at pressures >1 mTorr, post-deposition annealing in forming gas (FG) is required to improve conductivity. At these higher oxygen pressures, thermodynamic analysis coupled with a study using the Hall effect measurements and photoluminescence spectroscopy suggest that conductivity is limited by oxygen-related acceptor-like defects in the grains that compensate donors, effectively reducing the net carrier concentration and creating scattering centers that reduce electron mobility. Oxygen is also responsible for further suppression of conductivity by forming insulative metal oxide regions at the grain edges and oxygen-related electron traps at the grain boundaries. The hydrogen component in the FG is thought to passivate the intra-grain acceptor-like defects and improve carrier transport across these grain boundaries. Given this deleterious effect of oxygen on conductivity, depositions are performed in pure argon (Ar), i.e., the only oxygen species in the growth ambient are those ejected directly from the PLD solid source target. Ga-doped ZnO deposited in Ar at 200 °C and 10 mTorr have resistivities of 1.8E-4 ohm-cm without the need for post deposition annealing. Average transmittance of the Ga-doped films is 93% over the visible and near infrared (IR) spectral regions, but free carrier absorption is a limiting factor further into the IR. After annealing in FG at 500 °C, a 300 nm Ar film has a Haacke figure of merit of 6.61E-2 sq. ohm.
ContributorsScott, Robin Charis (Author) / Zhang, Yong Hang (Thesis advisor) / Alford, Terry (Committee member) / Krause, Stephen (Committee member) / Leedy, Kevin (Committee member) / Arizona State University (Publisher)
Created2011
157793-Thumbnail Image.png
Description
Interconnection methods for IBC photovoltaic (PV) module integration have widely been explored yet a concrete and cost-effective solution has yet to be found. Traditional methods of tabbing and stringing which are still being used today impart increased stress on the cells, not to mention the high temperatures induced during the

Interconnection methods for IBC photovoltaic (PV) module integration have widely been explored yet a concrete and cost-effective solution has yet to be found. Traditional methods of tabbing and stringing which are still being used today impart increased stress on the cells, not to mention the high temperatures induced during the soldering process as well. In this work and effective and economical interconnection method is demonstrated, by laser welding an embossed aluminum (Al) electrode layer to screen-printed silver (Ag) on the solar cell. Contact resistivity below 1mΩ.cm2 is measured with the proposed design. Cross-sectional analysis of interfaces is conducted via Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS) methods. Typical laser weld phenomenon observed involves Al ejection at the entrance of the weld, followed by Al and Ag fusing together mid-way through the weld spot, as revealed by cross-sectional depth analysis. The effects of voltage and lamp intensity are also tested on the welding process. With the range of voltages tested, 240V seems to show the least process variability and the most uniform contact between Al and Ag layers, upon using an Ethylene-Vinyl Acetate (EVA) encapsulant. Two lamp intensities were also explored with a Polyolefin (POE) encapsulant with Al and Ag layers seen welded together as well. Smaller effect sizes at lamp 2 intensity showed better contact. A process variability analysis was conducted to understand the effects of the two different lamps on welds being formed. Lamp 2 showed a bi-modal size distribution with a higher peak intensity, with more pulses coupling into the sample, as compared to lamp 1.
ContributorsSukumar Mony, Sujyot (Author) / Holman, Zachary (Thesis advisor) / Alford, Terry (Committee member) / Yu, Zhengshan (Committee member) / Arizona State University (Publisher)
Created2019