Matching Items (16)
Filtering by

Clear all filters

148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151533-Thumbnail Image.png
Description
Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for

Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for future technologies. This work presents a novel test measurement and extraction technique which is non-invasive to the actual operation of the SRAM memory array. The salient features of this work include i) A single ended SRAM test structure with no disturbance to SRAM operations ii) a convenient test procedure that only requires quasi-static control of external voltages iii) non-iterative method that extracts the VTH variation of each transistor from eight independent switch point measurements. With the present day technology scaling, in addition to the variability with the process, there is also the impact of other aging mechanisms which become dominant. The various aging mechanisms like Negative Bias Temperature Instability (NBTI), Channel Hot Carrier (CHC) and Time Dependent Dielectric Breakdown (TDDB) are critical in the present day nano-scale technology nodes. In this work, we focus on the impact of NBTI due to aging in the SRAM cell and have used Trapping/De-Trapping theory based log(t) model to explain the shift in threshold voltage VTH. The aging section focuses on the following i) Impact of Statistical aging in PMOS device due to NBTI dominates the temporal shift of SRAM cell ii) Besides static variations , shifting in VTH demands increased guard-banding margins in design stage iii) Aging statistics remain constant during the shift, presenting a secondary effect in aging prediction. iv) We have investigated to see if the aging mechanism can be used as a compensation technique to reduce mismatch due to process variations. Finally, the entire test setup has been tested in SPICE and also validated with silicon and the results are presented. The method also facilitates the study of design metrics such as static, read and write noise margins and also the data retention voltage and thus help designers to improve the cell stability of SRAM.
ContributorsRavi, Venkatesa (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2013
136909-Thumbnail Image.png
Description
The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro

The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro Combined Cycle (MMCC) with 3D renderings. Defining requirements and problem-solving approach methodology for generating complex design solutions required iterative design and a thorough understanding of industry practices and market trends. This paper briefly discusses design specifics; however, the major emphasis is on aspects pertaining to economical manufacture, deployment, and subsequent suitability to address the aforementioned challenges. The selection of these systems is based on the steady reduction of PV installation costs in recent years (average among utility, commercial, and residential down 27% from Q4 2012 to Q4 2013) and the dramatic decline in natural gas prices to $5.61 per thousand cubic feet. In addition, a large number of utility scale coal-based power plants will be retired in 2014, many due to progressive emission criteria, creating a demand for additional power systems to offset the capacity loss and to increase generating capacity in order to facilitate the ever-expanding world population. The proposed energy systems are not designed to provide power to the masses through a central location. Rather, they are intended to provide economical, reliable, and high quality power to remote locations and decentralized power to community-based grids. These energy systems are designed as a means of transforming and supporting the current infrastructure through distributed electricity generation.
ContributorsSandoval, Benjamin Mark (Author) / Bryan, Harvey (Thesis director) / Fonseca, Ernesto (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137102-Thumbnail Image.png
Description
The global energy demand is expected to grow significantly in the next several decades and support for energy generation with high carbon emissions is continuing to decline. Alternative methods have gained interest, and wind energy has established itself as a viable source. Standard wind farms have limited room for growth

The global energy demand is expected to grow significantly in the next several decades and support for energy generation with high carbon emissions is continuing to decline. Alternative methods have gained interest, and wind energy has established itself as a viable source. Standard wind farms have limited room for growth and improvement, so wind energy has started to explore different directions. The urban environment is a potential direction for wind energy due to its proximity to the bulk of energy demand. CFD analysis has demonstrated that the presence of buildings can accelerate wind speeds between buildings and on rooftops. However, buildings generate areas of increased turbulence at their surface. The turbulence thickness and intensity vary with roof shape, building height, and building orientation. The analysis has concluded that good wind resource is possible in the urban environment in specific locations. With that, turbine selection becomes very important. A comparison has concluded that vertical axis wind turbines are more useful in the urban environment than horizontal axis wind turbines. Furthermore, building-augmented wind turbines are recommended because they are architecturally integrated into a building for the specific purpose of generating more energy. The research has concluded that large-scale generation in the urban environment is unlikely to be successful, but small-scale generation is quite viable. Continued research and investigation on urban wind energy is recommended.
ContributorsKlumpers, Ryan Scott (Author) / Calhoun, Ronald (Thesis director) / Huang, Huei-Ping (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
Description
Each year, the average vehicle contributes 4.6 metric tons of carbon dioxide into the atmosphere [1]. These gases contribute to around 30,000 premature deaths each year [2] and are linked to in the increase in cases of Asthma. Human health is further impacted by the increase of greenhouse gasses in

Each year, the average vehicle contributes 4.6 metric tons of carbon dioxide into the atmosphere [1]. These gases contribute to around 30,000 premature deaths each year [2] and are linked to in the increase in cases of Asthma. Human health is further impacted by the increase of greenhouse gasses in the atmosphere. Rays from the sun travel to the Earth where they are absorbed. Absorbing the sun’s rays heats up the Earth which is then radiated into space. Greenhouse gasses inhibit this process much like the glass walls in a greenhouse. As a result, the temperature of the Earth steadily increases. The greenhouse effect is dangerous because it can be linked to natural disasters, rising ocean levels, and extinction of species. One of the biggest contributors to the greenhouse effect is burning fossil fuels. Powerplants, agriculture, and transportation are some of the largest contributors to the increase of atmospheric carbon dioxide. To mitigate the effects of transportation, car companies have invested into production of alternative and renewable fuels for their products. One of the sources which has gained popularity recently, is the use of electricity to power our vehicles. Tesla has spearheaded the electric car movement and is largely responsible for this beneficial shift. One issue with this approach is that a majority, around 76.3%, of Americans drive alone on their commute [13]. The market in its current state encourages inefficient transportation due to the lack of alternatives. While motorcycles may offer a more eco-friendly and economical approach to cars, many are afraid of potential hazards of using this mode of transportation. The introduction of electric bikes offers an interesting approach to improving this efficiency and safety issue. The wide availability to customers offers an alternative which pushes the traditional distance limits for commuting on a bicycle. Since the market is relatively new, several issues pose challenges to consumers. This research aims to clarify and analyze the electric bike market in order to supply a potential customer with the tools needed to acquire a high quality and reasonably price bike.
ContributorsFriedrich, Collin Anthony (Author) / Lee, Hyunglae (Thesis director) / Lacy, Gerald (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132768-Thumbnail Image.png
Description
This paper analyzes Burkina Faso’s Souro Sanou University Hospital Center’s energy needs and discusses whether or not solar panels are a good investment. This paper also discusses a way to limit the damage caused by power outages. The hospital has a history of problems with power outages; in the summer

This paper analyzes Burkina Faso’s Souro Sanou University Hospital Center’s energy needs and discusses whether or not solar panels are a good investment. This paper also discusses a way to limit the damage caused by power outages. The hospital has a history of problems with power outages; in the summer they have power outages every other day lasting between one to four hours, and in the rainy season they have outages once every other week lasting the same amount of time.
The first step in this analysis was collecting relevant data which includes: location, electricity rates, energy consumption, and existing assets. The data was entered into a program called HOMER. HOMER is a program which analyzes an electrical system and determines the best configuration and usage of assets to get the lowest levelized cost of energy (LCOE). In HOMER, five different analyses were performed. They reviewed the hospital’s energy usage over 25 years: the current situation, one of the current situation with added solar panels, and another where the solar panels have single axis tracking. The other two analyses created incentives to have more solar panels, one situation with net metering, and one with a sellback rate of 0.03 $/kWh. The result of the analysis concluded that the ideal situation would have solar panels with a capacity of 300 kW, and the LCOE in this situation will be 0.153 $/kWh. The analysis shows that investing in solar panels will save the hospital approximately $65,500 per year, but the initial investment of $910,000 only allows for a total savings of $61,253 over the life of the project. The analysis also shows that if the electricity company, Sonabel, eventually buys back electricity then net metering would be more profitable than reselling electricity for the hospital.
Solar panels will help the hospital save money over time, but they will not stop power outages from happening at the hospital. For the outages to stop affecting the hospital’s operations they will have to invest in an uninterrupted power supply (UPS). The UPS will power the hospital for the time between when the power goes out and when their generators are turning on which makes it an essential investment. This will stop outages from affecting the hospital, and if the power goes out during the day then the solar panels can help supplement the energy production which will take some of the strain from their generators.
The results of this study will be sent to officials at the hospital and they can decide if the large initial investment justifies the savings. If the solar panels and UPS can save one life, then maybe the large initial investment is worth it.
ContributorsSchmidt, Evin Khalil (Author) / Johnson, Nathan (Thesis director) / Miner, Mark (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134553-Thumbnail Image.png
Description
The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a

The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a strong focal point is needed to concentrate incident solar irradiation on the small, high efficiency cells. The objective of this study was to evaluate and quantify tracking accuracy for a performance model which would apply to similar two-axis systems. An analysis comparing CPV to traditional solar photovoltaics from an economic standpoint was conducted as well to evaluate the viability of emerging CPV technology. The research was performed using two calibrated solar radiation sensors mounted on the plane of the tracking system, normal to the sun. One sensor is held at a constant, normal angle (0 degrees) and the other is varied by a known interior angle in the range of 0 degrees to 10 degrees. This was to study the magnitude of the decrease in in irradiance as the angle deviation increases. The results show that, as the interior angle increases, the solar irradiance and thus available power available on the focal point will decrease roughly at a parabolic rate, with a sharp cutoff point at angles greater than 5 degrees. These findings have a significant impact on CPV system tracking mechanisms, which require high precision tracking in order to perform as intended.
ContributorsPodzemny, Dominic James (Author) / Reddy, Agami (Thesis director) / Kelman, Jonathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133914-Thumbnail Image.png
Description
This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background

This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background of previous studies in the area, some that agree with the research hypotheses and some that take a different path. Real-time data was collected hourly for energy consumption and external air temperature. Intermittent internal air temperature was collected by undergraduate researcher, Charles Banke. Regression analysis was used to prove two research hypotheses. The authors found no correlation between external air temperature and energy consumption, nor did they find a relationship between internal air temperature and energy consumption. This paper also includes recommendations for future work to improve the study.
ContributorsBanke, Charles Michael (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134817-Thumbnail Image.png
Description
For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective

For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective and reliable through their usage of motors, springs, cables, elastics, pneumatics and reaction loads. These mechanisms apply internal forces and reaction loads to the body. On the other hand, external forces are those caused by an external agent outside the system such as air, water, or magnets. A design for an exoskeleton using external forces has seldom been attempted by researchers. This thesis project focuses on the development of a Limb Gait Simulator based on a Pure External Force and has proven its effectiveness in generating torque on the human leg. The external force is generated through air propulsion using an Electric Ducted Fan (EDF) motor. Such a motor is typically used for remote control airplanes, but their applications can go beyond this. The objective of this research is to generate torque on the human leg through the control of the EDF engines thrust and the opening/closing of the reverse thruster flaps. This device qualifies as "assist as needed"; the user is entirely in control of how much assistance he or she may want. Static thrust values for the EDF engine are recorded using a thrust test stand. The product of the thrust (N) and the distance on the thigh (m) is the resulting torque. With the motor running at maximum RPM, the highest torque value reached was that of 3.93 (Nm). The motor EDF motor is powered by a 6S 5000 mAh LiPo battery. This torque value could be increased with the usage of a second battery connected in series, but this comes at a price. The designed limb gait simulator demonstrates that external forces, such as air, could have potential in the development of future rehabilitation devices.
ContributorsToulouse, Tanguy Nathan (Author) / Sugar, Thomas (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12