Matching Items (8)
Filtering by

Clear all filters

153181-Thumbnail Image.png
Description
We report the synthesis of novel boronic acid-containing metal-organic frameworks (MOFs), which was synthesized via solvothermal synthesis of cobalt nitride with 3,5-Dicarboxyphenylboronic acid (3,5-DCPBC). Powder X-ray diffraction and BET surface area analysis have been used to verify the successful synthesis of this microporous material.

We have also made the attempts

We report the synthesis of novel boronic acid-containing metal-organic frameworks (MOFs), which was synthesized via solvothermal synthesis of cobalt nitride with 3,5-Dicarboxyphenylboronic acid (3,5-DCPBC). Powder X-ray diffraction and BET surface area analysis have been used to verify the successful synthesis of this microporous material.

We have also made the attempts of using zinc nitride and copper nitride as metal sources to synthesize the boronic acid-containing MOFs. However, the attempts were not successful. The possible reason is the existence of copper and zinc ions catalyzed the decomposition of 3,5-Dicarboxyphenylboronic acid, forming isophthalic acid. The ended product has been proved to be isophthalic acid crystals by the single crystal X-ray diffraction. The effects of solvents, reaction temperature, and added bases were investigated. The addition of triethylamine has been shown to tremendously improve the sample crystallinity by facilitating ligand deprotonation
ContributorsYu, Jiuhao (Author) / Mu, Bin (Thesis advisor) / Forzani, Erica (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
154071-Thumbnail Image.png
Description
Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on design and synthesis of environmentally responsive microgels and their composites, and encompasses methods of utilizing microgel systems in applications as vehicles for the adsorption, retention, and targeted delivery of chemical species. Furthermore, self-assembled microgel particles at ionic liquid (IL)-water interfaces demonstrate responsive colloidal lattice morphology. The thesis first reports on the fundamental aspects of synthesis, functionalization, and characteristic properties of multifunctional environmentally responsive microgels derived from poly(N-isopropylacrylamide) (PNIPAm) and other functional co-monomers. In particular, the uptake and release of active chemical species such as rheology modifiers into and from these ionic microgels is demonstrated. Moreover, a facile tunable method for the formation of organic-inorganic composites with Fe3O4 nanoparticles adsorbed and embedded within ionic microgel particles is explored. Additionally, the development of zwitterionic microgels (ZI-MG) is presented. These aqueous ZI-MG dispersions exhibit reversible parabolic swelling as a function of pH and display a minimum hydrodynamic diameter at a tunable isoelectric point (IEP). This study also elucidates the controlled uptake and release of surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the polymer networks are explained in terms of their binding interactions. The latter part of this thesis highlights the versatility of fluorescently labeled microgel particles as stabilizers for IL-water droplets. When the prepared particles form monolayers and equilibrate at the liquid-liquid interface, the colloidal lattice organization may re-order itself depending on the surface charge of these particles. Finally, it is shown that the spontaneously formed and densely packed layers of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species.
ContributorsChen, Haobo (Author) / Dai, Lenore L (Committee member) / Chen, Kangping (Committee member) / Forzani, Erica (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2015
156129-Thumbnail Image.png
Description
An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams. A challenge is presented when capturing these impurities because the

An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams. A challenge is presented when capturing these impurities because the energy cost for processing the bulk fluid stream to capture trace contaminants is too great using traditional thermal separations. The development of sorbents that may capture these contaminants passively has been emphasized in academic research for some time, producing many designer materials including metal-organic frameworks (MOFs) and polymeric resins. Scaffolds must be developed to effectively anchor these materials in a passing fluid stream. In this work, two design techniques are presented for anchoring these sorbents in electrospun fiber scaffolds.

The first technique involves imbedding sorbent particles inside the fibers: forming particle-embedded fibers. It is demonstrated that particles will spontaneously coat themselves in the fibers at dilute loadings, but at higher loadings some get trapped on the fiber surface. A mathematical model is used to show that when these particles are embedded, the polymeric coating provided by the fibers may be designed to increase the kinetic selectivity and/or stability of the embedded sorbents. Two proof-of-concept studies are performed to validate this model including the increased selectivity of carbon dioxide over nitrogen when the MOF ZIF-8 is embedded in a poly(ethylene oxide) and Matrimid polymer blend; and that increased hydrothermal stability is realized when the water-sensitive MOF HKUST-1 is embedded in polystyrene fibers relative to pure HKUST-1 powder.

The second technique involves the creation of a pore network throughout the fiber to increase accessibility of embedded sorbent particles. It is demonstrated that the removal of a blended highly soluble polymer additive from the spun particle-containing fibers leaves a pore network behind without removing the embedded sorbent. The increased accessibility of embedded sorbents is validated by embedding a known direct air capture sorbent in porous electrospun fibers, and demonstrating that they have the fastest kinetic uptake of any direct air capture sorbent reported in literature to date, along with over 90% sorbent accessibility.
ContributorsArmstrong, Mitchell (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Seo, Dong (Committee member) / Lackner, Klaus (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2018
157184-Thumbnail Image.png
Description
The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is

The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is one way to avoid our current gigaton-scale emission of carbon dioxide into the atmosphere. However, for this to be possible, separation techniques are necessary to remove the nitrogen from air before combustion or from the flue gas after combustion. Metal-organic frameworks (MOFs) are a relatively new class of porous material that show great promise for adsorptive separation processes. Here, potential mechanisms of O2/N2 separation and CO2/N2 separation are explored.

First, a logical categorization of potential adsorptive separation mechanisms in MOFs is outlined by comparing existing data with previously studied materials. Size-selective adsorptive separation is investigated for both gas systems using molecular simulations. A correlation between size-selective equilibrium adsorptive separation capabilities and pore diameter is established in materials with complex pore distributions. A method of generating mobile extra-framework cations which drastically increase adsorptive selectivity toward nitrogen over oxygen via electrostatic interactions is explored through experiments and simulations. Finally, deposition of redox-active ferrocene molecules into systematically generated defects is shown to be an effective method of increasing selectivity towards oxygen.
ContributorsMcIntyre, Sean (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Lind, Marylaura (Committee member) / Arizona State University (Publisher)
Created2019
156931-Thumbnail Image.png
Description
The search for highly active, inexpensive, and earth abundant replacements for existing transition metal catalysts is ongoing. Our group has utilized several redox non-innocent ligands that feature flexible arms with donor substituents. These ligands allow for coordinative flexibility about the metal centre, while the redox non-innocent core helps to overcome

The search for highly active, inexpensive, and earth abundant replacements for existing transition metal catalysts is ongoing. Our group has utilized several redox non-innocent ligands that feature flexible arms with donor substituents. These ligands allow for coordinative flexibility about the metal centre, while the redox non-innocent core helps to overcome the one electron chemistry that is prevalent in first row transition metals. This dissertation focuses on the use of Ph2PPrDI, which can adopt a κ4-configuration when bound to a metal. One reaction that is industrially useful is hydrosilylation, which allows for the preparation of silicones that are useful in the lubrication, adhesive, and cosmetics industries. Typically, this reaction relies on highly active, platinum-based catalysts. However, the high cost of this metal has inspired the search for base metal replacements. In Chapter One, an overview of existing alkene and carbonyl hydrosilylation catalysts is presented. Chapter Two focuses on exploring the reactivity of (Ph2PPrDI)Ni towards carbonyl hydrosilylation, as well as the development of the 2nd generation catalysts, (iPr2PPrDI)Ni and (tBu2PPrDI)Ni. Chapter Three presents a new C-O bond hydrosilylation reaction for the formation of silyl esters. It was found the (Ph2PPrDI)Ni is the most active catalyst in the literature for this transformation, with turnover frequencies of up to 900 h-1. Chapter Four explores the activity and selectivity of (Ph2PPrDI)Ni for alkene hydrosilylation, including the first large scope of gem-olefins for a nickel-based catalyst. Chapter Five explores the chemistry of (Ph2PPrDI)CoH, first through electronic structure determinations and crystallography, followed by an investigation of its reactivity towards alkyne hydroboration and nitrile dihydroboration. (Ph2PPrDI)CoH is the first reported cobalt nitrile dihydroboration catalyst.
ContributorsRock, Christopher L (Author) / Trovitch, Ryan J (Thesis advisor) / Kouvetakis, John (Committee member) / Pettit, George R. (Committee member) / Arizona State University (Publisher)
Created2018
158667-Thumbnail Image.png
Description
Chemical modification of (semi)conducting surfaces with soft-material coatings containing electrocatalysts provides a strategy for developing integrated constructs that capture, convert, and store solar energy as fuels. However, a lack of effective strategies for interfacing electrocatalysts with solid-state materials, and an incomplete understanding of performance limiting factors, inhibit further development. In

Chemical modification of (semi)conducting surfaces with soft-material coatings containing electrocatalysts provides a strategy for developing integrated constructs that capture, convert, and store solar energy as fuels. However, a lack of effective strategies for interfacing electrocatalysts with solid-state materials, and an incomplete understanding of performance limiting factors, inhibit further development. In this work, chemical modification of a nanostructured transparent conductive oxide, and the III-V semiconductor, gallium phosphide, is achieved by applying a thin-film polymer coating containing appropriate functional groups to direct, template, and assemble molecular cobalt catalysts for activating fuel-forming reactions. The heterogeneous-homogeneous conducting assemblies enable comparisons of the structural and electrochemical properties of these materials with their homogeneous electrocatalytic counterparts. For these hybrid constructs, rational design of the local soft-material environment yields a nearly one-volt span in the redox chemistry of the cobalt metal centers. Further, assessment of the interplay between light absorption, charge transfer, and catalytic activity in studies involving molecular-catalyst-modified semiconductors affords models to describe the rates of photoelectrosynthetic fuel production as a function of the steady-state concentration of catalysts present in their activated form. These models provide a conceptual framework for extracting kinetic and thermodynamic benchmarking parameters. Finally, investigation of molecular ‘proton wires’ inspired by the Tyrosine Z-Histidine 190 redox pair in Photosystem II, provides insight into fundamental principles governing proton-coupled electron transfer, a process essential to all fuel-forming reactions relevant to solar fuel generation.
ContributorsWadsworth, Brian Lawrence (Author) / Moore, Gary F (Thesis advisor) / Moore, Thomas A. (Committee member) / Trovitch, Ryan J (Committee member) / Arizona State University (Publisher)
Created2020
158641-Thumbnail Image.png
Description
Thermal Energy Storage (TES) is of great significance for many engineering applications as it allows surplus thermal energy to be stored and reused later, bridging the gap between requirement and energy use. Phase change materials (PCMs) are latent heat-based TES which have the ability to store and release heat through

Thermal Energy Storage (TES) is of great significance for many engineering applications as it allows surplus thermal energy to be stored and reused later, bridging the gap between requirement and energy use. Phase change materials (PCMs) are latent heat-based TES which have the ability to store and release heat through phase transition processes over a relatively narrow temperature range. PCMs have a wide range of operating temperatures and therefore can be used in various applications such as stand-alone heat storage in a renewable energy system, thermal storage in buildings, water heating systems, etc. In this dissertation, various PCMs are incorporated and investigated numerically and experimentally with different applications namely a thermochemical metal hydride (MH) storage system and thermal storage in buildings. In the second chapter, a new design consisting of an MH reactor encircled by a cylindrical sandwich bed packed with PCM is proposed. The role of the PCM is to store the heat released by the MH reactor during the hydrogenation process and reuse it later in the subsequent dehydrogenation process. In such a system, the exothermic and endothermic processes of the MH reactor can be utilized effectively by enhancing the thermal exchange between the MH reactor and the PCM bed. Similarly, in the third chapter, a novel design that integrates the MH reactor with cascaded PCM beds is proposed. In this design, two different types of PCMs with different melting temperatures and enthalpies are arranged in series to improve the heat transfer rate and consequently shorten the time duration of the hydrogenation and dehydrogenation processes. The performance of the new designs (in chapters 2 and 3) is investigated numerically and compared with the conventional designs in the literature. The results indicate that the new designs can significantly enhance the time duration of MH reaction (up to 87%). In the fourth chapter, organic coconut oil PCM (co-oil PCM) is explored experimentally and numerically for the first time as a thermal management tool in building applications. The results show that co-oil PCM can be a promising solution to improve the indoor thermal environment in semi-arid regions.
ContributorsAlqahtani, Talal (Author) / Phelan, Patrick E (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Mellouli, Sofiene (Committee member) / Wang, Robert (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2020
132293-Thumbnail Image.png
Description
Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and

Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and selectivity. Mixed matrix membranes (MMMs) containing two-dimensional (2D) metal-organic frameworks (MOFs) as fillers are a highly sought approach to redress this trade-off given their enhanced gas permeabilities and selectivities compared to the pure polymeric membrane. These MMMs are increasingly gaining attention by researchers due to their unique properties and wide small- and large-scale gas separation applications. However, straightforward and scalable methods for the synthesis of MOFs nanosheets have thus far been persistently elusive. This study reports the single-phase preparation, and characterization of MMMs with 2D MOFs nanosheets as fillers. The prepared MOF and the polymer matrix form the ‘dense’ MMMs which exhibit increased gas diffusion resistance, and thus improved separation abilities. The single-phase approach was more successful than the bi-phase at synthesizing the MOFs. The influence of sonication power and time on the characteristics and performance of the membranes are examined and discussed. Increasing the sonication power from 50% to 100% reduces the pore size. Additionally, the ultimate effect on the selectivity and permeance of the MMMs with different single gases is reported. Analysis of results with various gas mixers indicates further performance improvements in these MMMs could be achieved by increasing sonication time and tuning suitable membrane thicknesses. Reported results reveal that MMMs are excellent candidates for next-generation gas mixture separations, with potential applications in CO2 capture and storage, hydrogen recovery, alkene recovery from alkanes, and natural gas purification.
ContributorsNkuutu, John (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05