Matching Items (14)
Filtering by

Clear all filters

135418-Thumbnail Image.png
Description
Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.
ContributorsPhan, Richard Dylan (Author) / Jiao, Yang (Thesis director) / Ren, Yi (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136483-Thumbnail Image.png
Description
The research objective is to maintain the A4 nanobody stability during dialysis. Various dialysis buffers were tested and compared, including PBS with varying amounts of the detergent, Tween: low, high, none. Furthermore, PBS, Tris, and HEPES, were tested and compared. PBS without Tween was the worst for preserving A4 stability.

The research objective is to maintain the A4 nanobody stability during dialysis. Various dialysis buffers were tested and compared, including PBS with varying amounts of the detergent, Tween: low, high, none. Furthermore, PBS, Tris, and HEPES, were tested and compared. PBS without Tween was the worst for preserving A4 stability. PBS was determined to be a better dialysis buffer than Tris or HEPES. To find the optimum buffer, other buffers will be tested and compared with PBS; methods such as gravity filtration and lyophilization will be considered as alternatives to dialysis.
ContributorsTao, Kevin Huang (Author) / Sierks, Michael (Thesis director) / Williams, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
137034-Thumbnail Image.png
Description
The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.
ContributorsLau, Ching Yan (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Lively, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
136927-Thumbnail Image.png
Description
The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP

The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP mixtures as well as graphene/LFP mixtures and a synthesized graphene/LFP nanocomposite. Graphene synthesis was attempted before purchasing graphene materials, and further exploration of graphene synthesis is recommended due to limitations in purchased product quality. While it was determined after extensive experimentation that the graphene/LFP nanocomposite could not be successfully synthesized according to current literature information, a mixed composite of graphene/LFP was successfully tested and found to have k = 0.23 W/m*K. This result provides a starting point for further thermal testing method development and k optimization in Li-ion battery electrode nanocomposites.
ContributorsStehlik, Daniel Wesley (Author) / Chan, Candace K. (Thesis director) / Dai, Lenore (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
135253-Thumbnail Image.png
Description
In microbial fuel cells (MFCs) the biocathode is developed as a potential alternative to chemical cathodic catalysts, which are deemed as expensive and unsustainable for applications. These cells utilize different types of microorganisms as catalysts to promote biodegradation of organic matter while simultaneously converting energy released in metabolic reactions into

In microbial fuel cells (MFCs) the biocathode is developed as a potential alternative to chemical cathodic catalysts, which are deemed as expensive and unsustainable for applications. These cells utilize different types of microorganisms as catalysts to promote biodegradation of organic matter while simultaneously converting energy released in metabolic reactions into electrical energy. Most current research have focused more on the anodic microbes, including the current generating bacteria species, anodic microbial community composition, and the mechanisms of the extracellular electron transfer. Compared to the anode, research on the microbes of the biocathode of the MFCs are very limited and are heavily focused on the role of the bacteria in the system. Thus, further understand of the mechanism of the microbial community in the biocathode will create new engineering applications for sustainable energy. Previous research conducted by Strycharz-Glaven et al. presented an electrochemical analysis of a Marinobacter-dominated biocathode communitygrown on biocathodes in sediment/seawater-based MFCs. Chronoamperometry results indicated that current densities up to -0.04 A/m2 were produced for the biocathode. Cyclic voltammetry responses indicated a midpoint potential at 0.196 V ± 0.01 V. However, the reactor design for these experiments showed that no oxygen is supplied to the electrochemical system. By incorporating an air diffusion membrane to the cathode of the reactor, chronoamperometry results have produced current density in the system up to -0.15 A/m2. Cyclic voltammetry results have also displayed a midpoint potential of 0.25 V ± 0.01 V under scan rates of 0.2 mV/s. Thus, this electrochemical setup has increased the current output of the system.
ContributorsWang, Zixuan (Author) / Torres, Cesar (Thesis director) / Hart, Steven (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134847-Thumbnail Image.png
Description
The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the

The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the DARPin in E. coli for simple expression. Following growth and purification the proteins were validated using SDS-PAGE, Western Blot, BCA and indirect sandwich ELISA using transgenic mouse brain tissue. Targeted functionality of the DARPin structure was utilized during characterization methods to ensure the efficacy of the protein as a diagnostic for the respective disease targets. Both the ADC7 and PDC1 demonstrated improved binding with transgenic mice compared to wild type with a maximum 1.8 and 1.7 relative ratio, respectively. Additionally, both of the proteins demonstrated exclusive binding to their disease target and did not provide false positive results.
ContributorsTindell, John (Co-author) / Card, Emma (Co-author) / Sierks, Michael (Thesis director) / Nannenga, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132133-Thumbnail Image.png
Description
Mycobacterium tuberculosis is the primary bacteria responsible for tuberculosis, one of the most dangerous diseases, and top causes of death worldwide, as identified by the World Health Organization in a 2018 report. Diagnostic tools currently exist for identifying those who carry active or latent versions of the infection including chest

Mycobacterium tuberculosis is the primary bacteria responsible for tuberculosis, one of the most dangerous diseases, and top causes of death worldwide, as identified by the World Health Organization in a 2018 report. Diagnostic tools currently exist for identifying those who carry active or latent versions of the infection including chest radiographs, a Mantoux tuberculin skin test, or an acid-fast bacilli smear of sputum samples. These methods are standard in the medical community of high income countries, but pose challenges for lower-income regions of the world as well as vulnerable populations. The need for a rapid, inexpensive, and non-invasive method of tuberculosis detection is evident by the ten million that contracted and 1.6 million that died from TB in 2017 alone. In our study, we used a previously developed nanoplasmon-enhanced scattering technology combined with dark field microscopy in order to investigate the potential for a blood-based TB detection assay. Twenty-eight capture antibodies were screened using cell culture exosomes and human serum samples to identify candidates for a TB-derived exosome biomarker. Four antibodies demonstrated potential for distinguishing negative controls from positive controls in this study: anti-AG85, anti-AG85B, anti-SodA, anti-Ald. These capture antibodies displayed significant differences (p<0.05) for both cell culture exosomes and human serum samples on more than one occasion. The work is significant in its ability to distinguish potential capture antibody targets, and future experimentation may yield a technology ready for clinical settings to address the gap in current TB detection methods.
ContributorsWalls, Robert (Author) / Hu, Tony (Thesis director) / Fan, Jia (Committee member) / School of Molecular Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131946-Thumbnail Image.png
Description
Fossil fuels are currently the main source of energy in the world’s transportation sector. They are also the primary contributor to carbon emissions in the atmosphere, leading to adverse climate effects. The objective of the following research is to increase the yield and efficiency of algal biofuel in order to

Fossil fuels are currently the main source of energy in the world’s transportation sector. They are also the primary contributor to carbon emissions in the atmosphere, leading to adverse climate effects. The objective of the following research is to increase the yield and efficiency of algal biofuel in order to establish algal-derived fuel as a competitive alternative to predominantly used fossil fuels. Using biofuel commercially will reduce the cost of production and ultimately decrease additional carbon emissions. Experiments were performed using hydrothermal liquefaction (HTL) to determine which catalyst would enhance the algal biocrude oil and result in the highest quality biofuel product, as well as to find the optimal combination of processing temperature and manure co-liquefaction of biomass ratio. For the catalytic upgrading experiments, Micractenium Immerum algae was used in conjunction with pure H2, Pt/C, MO2C, and HZSM-5 catalysts at 350℃ and 400℃, 430 psi, and a 30-minute residence time to investigate the effects of catalyst choice and temperature on the crude oil yield. While all catalysts increased the carbon content of the crude oil, it was found that using HZSM-5 at 350℃ resulted in the greatest overall yield of about 75%. However, the Pt/C catalyst increased the HHV from 34.26 MJ/kg to 43.26 MJ/kg. Cyanidioschyzon merolae (CM) algae and swine manure were utilized in the co-liquefaction experiments, in ratios (algae to swine) of 80:20, 50:50, and 20:80 at temperatures of 300℃ and 330℃. It was found that a ratio of 80:20 at 330℃ produced the highest biocrude oil yield of 29.3%. Although the 80:20 experiments had the greatest biomass conversion and best supported the deacidification of the oil product, the biocrude oil had a HHV of 33.58 MJ/kg, the lowest between the three different ratios. However, all calorific values were relatively close to each other, suggesting that both catalytic upgrading and co-liquefaction can increase the efficiency and economic viability of algal biofuel.
ContributorsMurdock, Tessa A (Author) / Deng, Shuguang (Thesis director) / Varman, Arul (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05