Matching Items (2)
Filtering by

Clear all filters

152025-Thumbnail Image.png
Description
At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis

At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.
ContributorsPrakash, Nitin (Author) / Heydt, Gerald T. (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151080-Thumbnail Image.png
Description
Electric utilities are exploring new technologies to cope up with the in-crease in electricity demand and power transfer capabilities of transmission lines. Compact transmission lines and high phase order systems are few of the techniques which enhance the power transfer capability of transmission lines without requiring any additional right-of-way. This

Electric utilities are exploring new technologies to cope up with the in-crease in electricity demand and power transfer capabilities of transmission lines. Compact transmission lines and high phase order systems are few of the techniques which enhance the power transfer capability of transmission lines without requiring any additional right-of-way. This research work investigates the impact of compacting high voltage transmission lines and high phase order systems on the surface electric field of composite insulators, a key factor deciding service performance of insulators. The electric field analysis was done using COULOMB 9.0, a 3D software package which uses a numerical analysis technique based on Boundary Element Method (BEM). 3D models of various types of standard transmission towers used for 230 kV, 345 kV and 500 kV level were modeled with different insulators con-figurations and number of circuits. Standard tower configuration models were compacted by reducing the clearance from live parts in steps of 10%. It was found that the standard tower configuration can be compacted to 30% without violating the minimum safety clearance mandated by NESC standards. The study shows that surface electric field on insulators for few of the compact structures exceeded the maximum allowable limit even if corona rings were installed. As a part of this study, a Gaussian process model based optimization pro-gram was developed to find the optimum corona ring dimensions to limit the electric field within stipulated values. The optimization program provides the dimen-sions of corona ring, its placement from the high voltage end for a given dry arc length of insulator and system voltage. JMP, a statistical computer package and AMPL, a computer language widely used form optimization was used for optimi-zation program. The results obtained from optimization program validated the industrial standards.
ContributorsMohan, Nihal (Author) / Gorur, Ravi S. (Thesis advisor) / Heydt, Gerald T. (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2012