Matching Items (14)
Filtering by

Clear all filters

152655-Thumbnail Image.png
Description
Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into

Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into oxygen and hydrogen (a useful chemical fuel) is a fascinating theoretical and experimental challenge that is worth pursuing because the advance of the knowledge that it implies and the availability of water and sunlight. Inspired by natural photosynthesis and building on previous work from our laboratory, this dissertation focuses on the development of water-splitting dye-sensitized photoelectrochemical tandem cells (WSDSPETCs). The design, synthesis, and characterization of high-potential porphyrins and metal-free phthalocyanines with phosphonic anchoring groups are reported. Photocurrents measured for WSDSPETCs made with some of these dyes co-adsorbed with molecular or colloidal catalysts on TiO2 electrodes are reported as well. To guide in the design of new molecules we have used computational quantum chemistry extensively. Linear correlations between calculated frontier molecular orbital energies and redox potentials were built and tested at multiple levels of theory (from semi-empirical methods to density functional theory). Strong correlations (with r2 values > 0.99) with very good predictive abilities (rmsd < 50 mV) were found when using density functional theory (DFT) combined with a continuum solvent model. DFT was also used to aid in the elucidation of the mechanism of the thermal relaxation observed for the charge-separated state of a molecular triad that mimics the photo-induced proton coupled electron transfer of the tyrosine-histidine redox relay in the reaction center of Photosystem II. It was found that the inclusion of explicit solvent molecules, hydrogen bonded to specific sites within the molecular triad, was essential to explain the observed thermal relaxation. These results are relevant for both advancing the knowledge about natural photosynthesis and for the future design of new molecules for WSDSPETCs.
ContributorsMéndez-Hernández, Dalvin D (Author) / Moore, Ana L (Thesis advisor) / Mujica, Vladimiro (Thesis advisor) / Gust, Devens J. (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
152470-Thumbnail Image.png
Description
DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the

DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. This dissertation focuses on building novel types of computational DNA systems based on both DNA reaction networks and DNA nanotechnology. A series of related research projects are presented here. First, a novel, three-input majority logic gate based on DNA strand displacement reactions was constructed. Here, the three inputs in the majority gate have equal priority, and the output will be true if any two of the inputs are true. We subsequently designed and realized a complex, 5-input majority logic gate. By controlling two of the five inputs, the complex gate is capable of realizing every combination of OR and AND gates of the other 3 inputs. Next, we constructed a half adder, which is a basic arithmetic unit, from DNA strand operated XOR and AND gates. The aim of these two projects was to develop novel types of DNA logic gates to enrich the DNA computation toolbox, and to examine plausible ways to implement large scale DNA logic circuits. The third project utilized a two dimensional DNA origami frame shaped structure with a hollow interior where DNA hybridization seeds were selectively positioned to control the assembly of small DNA tile building blocks. The small DNA tiles were directed to fill the hollow interior of the DNA origami frame, guided through sticky end interactions at prescribed positions. This research shed light on the fundamental behavior of DNA based self-assembling systems, and provided the information necessary to build programmed nanodisplays based on the self-assembly of DNA.
ContributorsLi, Wei (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
133914-Thumbnail Image.png
Description
This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background

This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background of previous studies in the area, some that agree with the research hypotheses and some that take a different path. Real-time data was collected hourly for energy consumption and external air temperature. Intermittent internal air temperature was collected by undergraduate researcher, Charles Banke. Regression analysis was used to prove two research hypotheses. The authors found no correlation between external air temperature and energy consumption, nor did they find a relationship between internal air temperature and energy consumption. This paper also includes recommendations for future work to improve the study.
ContributorsBanke, Charles Michael (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137102-Thumbnail Image.png
Description
The global energy demand is expected to grow significantly in the next several decades and support for energy generation with high carbon emissions is continuing to decline. Alternative methods have gained interest, and wind energy has established itself as a viable source. Standard wind farms have limited room for growth

The global energy demand is expected to grow significantly in the next several decades and support for energy generation with high carbon emissions is continuing to decline. Alternative methods have gained interest, and wind energy has established itself as a viable source. Standard wind farms have limited room for growth and improvement, so wind energy has started to explore different directions. The urban environment is a potential direction for wind energy due to its proximity to the bulk of energy demand. CFD analysis has demonstrated that the presence of buildings can accelerate wind speeds between buildings and on rooftops. However, buildings generate areas of increased turbulence at their surface. The turbulence thickness and intensity vary with roof shape, building height, and building orientation. The analysis has concluded that good wind resource is possible in the urban environment in specific locations. With that, turbine selection becomes very important. A comparison has concluded that vertical axis wind turbines are more useful in the urban environment than horizontal axis wind turbines. Furthermore, building-augmented wind turbines are recommended because they are architecturally integrated into a building for the specific purpose of generating more energy. The research has concluded that large-scale generation in the urban environment is unlikely to be successful, but small-scale generation is quite viable. Continued research and investigation on urban wind energy is recommended.
ContributorsKlumpers, Ryan Scott (Author) / Calhoun, Ronald (Thesis director) / Huang, Huei-Ping (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136909-Thumbnail Image.png
Description
The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro

The following document addresses two grand challenges posed to engineers: to make solar energy economically viable and to restore and improve urban infrastructure. Design solutions to these problems consist of the preliminary designs of two energy systems: a Packaged Photovoltaic (PPV) energy system and a natural gas based Modular Micro Combined Cycle (MMCC) with 3D renderings. Defining requirements and problem-solving approach methodology for generating complex design solutions required iterative design and a thorough understanding of industry practices and market trends. This paper briefly discusses design specifics; however, the major emphasis is on aspects pertaining to economical manufacture, deployment, and subsequent suitability to address the aforementioned challenges. The selection of these systems is based on the steady reduction of PV installation costs in recent years (average among utility, commercial, and residential down 27% from Q4 2012 to Q4 2013) and the dramatic decline in natural gas prices to $5.61 per thousand cubic feet. In addition, a large number of utility scale coal-based power plants will be retired in 2014, many due to progressive emission criteria, creating a demand for additional power systems to offset the capacity loss and to increase generating capacity in order to facilitate the ever-expanding world population. The proposed energy systems are not designed to provide power to the masses through a central location. Rather, they are intended to provide economical, reliable, and high quality power to remote locations and decentralized power to community-based grids. These energy systems are designed as a means of transforming and supporting the current infrastructure through distributed electricity generation.
ContributorsSandoval, Benjamin Mark (Author) / Bryan, Harvey (Thesis director) / Fonseca, Ernesto (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134553-Thumbnail Image.png
Description
The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a

The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a strong focal point is needed to concentrate incident solar irradiation on the small, high efficiency cells. The objective of this study was to evaluate and quantify tracking accuracy for a performance model which would apply to similar two-axis systems. An analysis comparing CPV to traditional solar photovoltaics from an economic standpoint was conducted as well to evaluate the viability of emerging CPV technology. The research was performed using two calibrated solar radiation sensors mounted on the plane of the tracking system, normal to the sun. One sensor is held at a constant, normal angle (0 degrees) and the other is varied by a known interior angle in the range of 0 degrees to 10 degrees. This was to study the magnitude of the decrease in in irradiance as the angle deviation increases. The results show that, as the interior angle increases, the solar irradiance and thus available power available on the focal point will decrease roughly at a parabolic rate, with a sharp cutoff point at angles greater than 5 degrees. These findings have a significant impact on CPV system tracking mechanisms, which require high precision tracking in order to perform as intended.
ContributorsPodzemny, Dominic James (Author) / Reddy, Agami (Thesis director) / Kelman, Jonathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
153645-Thumbnail Image.png
Description
Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity

Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus’s ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their accumulation. Herein is described the synthesis and photophysical analysis of a molecular triad that mimics the effects of NPQ on charge separation within the photosynthetic reaction centers. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies were used to demonstrate reversible quenching of the first singlet excited state affecting the quantum yield of charge separation by approximately one order of magnitude. As in the natural system, the populations of unquenched and quenched states and, therefore, the overall yields of charge separation were found to be dependent upon acid concentration.
ContributorsPahk, Ian (Author) / Gust, Devens (Thesis advisor) / Gould, Ian (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2015
137623-Thumbnail Image.png
Description
Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their responses, and collects data about their performance. This thesis creative project addresses the design and implementation of an input parser for organic chemistry reagent questions, to appear on his website. After students used the form to submit questions throughout the Spring 2013 semester in Dr. Gould's organic chemistry class, the data gathered from their usage was analyzed, and feedback was collected. The feedback obtained from students was positive, and suggested that the input parser accomplished the educational goals that it sought to meet.
ContributorsBeerman, Eric Christopher (Author) / Gould, Ian (Thesis director) / Wilkerson, Kelly (Committee member) / Mosca, Vince (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
185619-Thumbnail Image.png
Description

The objective of this report is to discover a skyhook’s ability to change the plane of another spacecraft’s orbit while ensuring that each vehicle’s orbital energy remains constant. Skyhooks are a proposed momentum exchange device in which a tether is attached to a counterweight at one end and at the

The objective of this report is to discover a skyhook’s ability to change the plane of another spacecraft’s orbit while ensuring that each vehicle’s orbital energy remains constant. Skyhooks are a proposed momentum exchange device in which a tether is attached to a counterweight at one end and at the other, a capturing device intended to intercept rendezvousing spacecraft. Trigonometric velocity vector relations, along with objective comparisons to traditionally proposed uses for skyhooks and gravity-assist maneuvers were responsible for the ultimate parameterization of the proposed energy neutral maneuver. From this methodology, it was determined that a spacecraft’s initial relative velocity vector must be perpendicular to, and rotated about the skyhook’s total velocity vector if it is to benefit from an energy neutral plane change maneuver. A quaternion was used to model the rotation of the incoming spacecraft’s relative velocity vector. The potential post-maneuver spacecraft orbits vary in their inclinations depending on the ratio between the skyhook and spacecraft’s total velocities at the point of rendezvous as defined by the parameter called the alpha criterion. For many cases, the proposed maneuver will serve as a desirable alternative to currently practiced propulsive plane change methods because it does not costly require a substantial amount of propellant. The proposed maneuver is also more accessible than alternative methods that involve gravity-assist and aerodynamic forces. Additionally, by avoiding orbital degradation through the achievement of unchanging total orbital energy, the skyhook will be able to continually and self-sustainably provide plane changes to any spacecraft that belong to orbits that abide by the identified parameters.

ContributorsSeale, Ryan (Author) / Peet, Matthew (Thesis director) / Dahm, Werner (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05