Matching Items (260)
Filtering by

Clear all filters

152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
Description
Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids

Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids (post-zygotic). To understand the genetic architecture of these barriers and how they evolve, I studied a genus of wasps that exhibits barriers to gene flow that act both pre- and post-zygotically. Nasonia is a genus of four species of parasitoid wasps that can be hybridized in the laboratory. When two of these species, N. vitripennis and N. giraulti are mated, their offspring suffer, depending on the generation and cross examined, up to 80% mortality during larval development due to incompatible genic interactions between their nuclear and mitochondrial genomes. These species also exhibit pre-zygotic isolation, meaning they are more likely to mate with their own species when given the choice. I examined these two species and their hybrids to determine the genetic and physiological bases of both speciation mechanisms and to understand the evolutionary forces leading to them. I present results that indicate that the oxidative phosphorylation (OXPHOS) pathway, an essential pathway that is responsible for mitochondrial energy generation, is impaired in hybrids of these two species. These results indicate that this impairment is due to the unique evolutionary dynamics of the combined nuclear and mitochondrial origin of this pathway. I also present results showing that, as larvae, these hybrids experience retarded growth linked to the previously observed mortality and I explore possible physiological mechanisms for this. Finally, I show that the pre-mating isolation is due to a change in a single pheromone component in N. vitripennis males, that this change is under simple genetic control, and that it evolved neutrally before being co-opted as a species recognition signal. These results are an important addition to our overall understanding of the mechanisms of speciation and showcase Nasonia as an emerging model for the study of the genetics of speciation.
ContributorsGibson, Joshua D (Author) / Gadau, Jürgen (Thesis advisor) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Verrelli, Brian (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
152149-Thumbnail Image.png
Description
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating

Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain sched- uled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
ContributorsSteenis, Joel (Author) / Ayyanar, Raja (Thesis advisor) / Mittelmann, Hans (Committee member) / Tsakalis, Konstantinos (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
152152-Thumbnail Image.png
Description
The academic literature on science communication widely acknowledges a problem: science communication between experts and lay audiences is important, but it is not done well. General audience popular science books, however, carry a reputation for clear science communication and are understudied in the academic literature. For this doctoral dissertation, I

The academic literature on science communication widely acknowledges a problem: science communication between experts and lay audiences is important, but it is not done well. General audience popular science books, however, carry a reputation for clear science communication and are understudied in the academic literature. For this doctoral dissertation, I utilize Sam Harris's The Moral Landscape, a general audience science book on the particularly thorny topic of neuroscientific approaches to morality, as a case-study to explore the possibility of using general audience science books as models for science communication more broadly. I conduct a literary analysis of the text that delimits the scope of its project, its intended audience, and the domains of science to be communicated. I also identify seven literary aspects of the text: three positive aspects that facilitate clarity and four negative aspects that interfere with lay public engagement. I conclude that The Moral Landscape relies on an assumed knowledge base and intuitions of its audience that cannot reasonably be expected of lay audiences; therefore, it cannot properly be construed as popular science communication. It nevertheless contains normative lessons for the broader science project, both in literary aspects to be salvaged and literary aspects and concepts to consciously be avoided and combated. I note that The Moral Landscape's failings can also be taken as an indication that typical descriptions of science communication offer under-detailed taxonomies of both audiences for science communication and the varieties of science communication aimed at those audiences. Future directions of study include rethinking appropriate target audiences for science literacy projects and developing a more discriminating taxonomy of both science communication and lay publics.
ContributorsJohnson, Nathan W (Author) / Robert, Jason S (Thesis advisor) / Creath, Richard (Committee member) / Martinez, Jacqueline (Committee member) / Sylvester, Edward (Committee member) / Lynch, John (Committee member) / Arizona State University (Publisher)
Created2013
152153-Thumbnail Image.png
Description
Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can be divided into two parts. The first part of this dissertation focuses on developing a more accurate network model for TEP study. First, a mixed-integer linear programming (MILP) based TEP model is proposed for solving multi-stage TEP problems. Compared with previous work, the proposed approach reduces the number of variables and constraints needed and improves the computational efficiency significantly. Second, the AC power flow model is applied to TEP models. Relaxations and reformulations are proposed to make the AC model based TEP problem solvable. Third, a convexified AC network model is proposed for TEP studies with reactive power and off-nominal bus voltage magnitudes included in the model. A MILP-based loss model and its relaxations are also investigated. The second part of this dissertation investigates the uncertainty modeling issues in the TEP problem. A two-stage stochastic TEP model is proposed and decomposition algorithms based on the L-shaped method and progressive hedging (PH) are developed to solve the stochastic model. Results indicate that the stochastic TEP model can give a more accurate estimation of the annual operating cost as compared to the deterministic TEP model which focuses only on the peak load.
ContributorsZhang, Hui (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Mittelmann, Hans D (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2013
152156-Thumbnail Image.png
Description
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research. Particularly, the four chapters show how the changing scientific practices about cellular life in embryology, cell culture, aging research, and molecular biology of Caenorhabditis elegans shaped the interpretations about cell degeneration in the twentieth-century as life-shaping, limit-setting, complex, yet regulated. These events created and consolidated important concepts in life sciences such as programmed cell death, the Hayflick limit, apoptosis, and death genes. These cases also transformed the material and epistemic practices about the end of cellular life subsequently and led to the formations of new research communities. The four cases together show the ways cell degeneration became a shared subject between molecular cell biology, developmental biology, gerontology, oncology, and pathology of degenerative diseases. These practices and perspectives created a special kind of interconnectivity between different fields and led to a level of interdisciplinarity within cell degeneration research by the early 1990s.
ContributorsJiang, Lijing (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Hurlbut, James (Committee member) / Creath, Richard (Committee member) / White, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151916-Thumbnail Image.png
Description
Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over

Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.
ContributorsErickson, James (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Kroelinger, Michael D. (Committee member) / Reddy, T. Agami (Committee member) / Arizona State University (Publisher)
Created2013
152055-Thumbnail Image.png
Description
To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform

To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform undergraduate teaching. Only a limited number of studies have explored the pedagogical content knowledge of postsecondary level teachers. This study was conducted to characterize the PCK of biology faculty and explore the factors influencing their PCK. Data included semi-structured interviews, classroom observations, documents, and instructional artifacts. A qualitative inquiry was designed to conduct an in-depth investigation focusing on the PCK of six biology instructors, particularly the types of knowledge they used for teaching biology, their perceptions of teaching, and the social interactions and experiences that influenced their PCK. The findings of this study reveal that the PCK of the biology faculty included eight domains of knowledge: (1) content, (2) context, (3) learners and learning, (4) curriculum, (5) instructional strategies, (6) representations of biology, (7) assessment, and (8) building rapport with students. Three categories of faculty PCK emerged: (1) PCK as an expert explainer, (2) PCK as an instructional architect, and (3) a transitional PCK, which fell between the two prior categories. Based on the interpretations of the data, four social interactions and experiences were found to influence biology faculty PCK: (1) teaching experience, (2) models and mentors, (3) collaborations about teaching, and (4) science education research. The varying teaching perspectives of the faculty also influenced their PCK. This study shows that the PCK of biology faculty for teaching large introductory courses at large research institutions is heavily influenced by factors beyond simply years of teaching experience and expert content knowledge. Social interactions and experiences created by the institution play a significant role in developing the PCK of biology faculty.
ContributorsHill, Kathleen M. (Author) / Luft, Julie A. (Thesis advisor) / Baker, Dale (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2013
151946-Thumbnail Image.png
Description
This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The

This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The protons are introduced into a cross-linked polyphospazene rubber by the superacid HOTf, which is absorbed by partial protonation of the backbone nitrogens. The decoupling of conductivity from segmental relaxation times assessed by comparison with conductivity relaxation times amounts to some 10 orders of magnitude, but it cannot be concluded whether it is purely protonic or due equally to a mobile OTf- or H(OTf)2-; component. The second electrolyte is built on the success of phosphoric acid as a fuel cell electrolyte, by designing a variant of the molecular acid that has increased temperature range without sacrifice of high temperature conductivity or open circuit voltage. The success is achieved by introduction of a hybrid component, based on silicon coordination of phosphate groups, which prevents decomposition or water loss to 250ºC, while enhancing free proton motion. Conductivity studies are reported to 285ºC and full H2/O2 cell polarization curves to 226ºC. The current efficiency reported here (current density per unit of fuel supplied per sec) is the highest on record. A power density of 184 (mW.cm-2) is achieved at 226ºC with hydrogen flow rate of 4.1 ml/minute. The third electrolyte is a novel type of ionic liquids which is made by addition of a super strong Brønsted acid to a super weak Brønsted base. Here it is shown that by allowing the proton of transient HAlCl4, to relocate on a very weak base that is also stable to superacids, we can create an anhydrous ionic liquid, itself a superacid, in which the proton is so loosely bound that at least 50% of the electrical conductivity is due to the motion of free protons. The protic ionic liquids (PILs) described, pentafluoropyridinium tetrachloroaluminate and 5-chloro-2,4,6-trifluoropyrimidinium tetrachloroaluminate, might be the forerunner of a class of materials in which the proton plasma state can be approached.
ContributorsAnsari, Younes (Author) / Angell, Charles A (Thesis advisor) / Richert, Ranko (Committee member) / Chizmeshya, Andrew (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2013
152016-Thumbnail Image.png
Description
Energy is a central concern of sustainability because how we produce and consume energy affects society, economy, and the environment. Sustainability scientists are interested in energy transitions away from fossil fuels because they are nonrenewable, increasingly expensive, have adverse health effects, and may be the main driver of climate change.

Energy is a central concern of sustainability because how we produce and consume energy affects society, economy, and the environment. Sustainability scientists are interested in energy transitions away from fossil fuels because they are nonrenewable, increasingly expensive, have adverse health effects, and may be the main driver of climate change. They see an opportunity for developing countries to avoid the negative consequences fossil-fuel-based energy systems, and also to increase resilience, by leap-frogging-over the centralized energy grid systems that dominate the developed world. Energy transitions pose both challenges and opportunities. Obstacles to transitions include 1) an existing, centralized, complex energy-grid system, whose function is invisible to most users, 2) coordination and collective-action problems that are path dependent, and 3) difficulty in scaling up RE technologies. Because energy transitions rely on technological and social innovations, I am interested in how institutional factors can be leveraged to surmount these obstacles. The overarching question that underlies my research is: What constellation of institutional, biophysical, and social factors are essential for an energy transition? My objective is to derive a set of "design principles," that I term institutional drivers, for energy transitions analogous to Ostrom's institutional design principles. My dissertation research will analyze energy transitions using two approaches: applying the Institutional Analysis and Development Framework and a comparative case study analysis comprised of both primary and secondary sources. This dissertation includes: 1) an analysis of the world's energy portfolio; 2) a case study analysis of five countries; 3) a description of the institutional factors likely to promote a transition to renewable-energy use; and 4) an in-depth case study of Thailand's progress in replacing nonrenewable energy sources with renewable energy sources. My research will contribute to our understanding of how energy transitions at different scales can be accomplished in developing countries and what it takes for innovation to spread in a society.
ContributorsKoster, Auriane Magdalena (Author) / Anderies, John M (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Van Der Leeuw, Sander (Committee member) / Arizona State University (Publisher)
Created2013