Matching Items (824)
Filtering by

Clear all filters

150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
149704-Thumbnail Image.png
Description
There has been a push to create and implement school wellness policies. Childhood obesity statistics suggest that schools may have an important role to play in promoting wellness. Childhood obesity has become a significant problem in the United States. The percentage of obese children in the United States has more

There has been a push to create and implement school wellness policies. Childhood obesity statistics suggest that schools may have an important role to play in promoting wellness. Childhood obesity has become a significant problem in the United States. The percentage of obese children in the United States has more than doubled since 1970, and up to 33% of the children in the United States are currently overweight. Among the 33% of children who are overweight, 25% are obese, and 14% have type 2 diabetes, previously considered to be a condition found only in adults. This mixed-method study with a string qualitative component study examined three aspects of federally mandated local wellness polices. The study investigated the policies themselves, how the policies are understood in the local school setting, with a particular focus on the impact the policies have had on school meals. The bulk of the research data was generated through 8 in-depth interviews. The interviews were conducted with key stakeholders within 2 elementary school districts in Arizona. In addition, the evaluation of 20 local wellness polices was conducted via a rubric scoring system. The primary component found to be lacking in local wellness policies was the evaluation method. Recommendations for school districts include the establishment of a clear method of measurement.
ContributorsCrawford, Sara S (Author) / Mccarty, Teresa L. (Thesis advisor) / Molnar, Alex (Thesis advisor) / Montoya, Araceli (Committee member) / Arizona State University (Publisher)
Created2011
149707-Thumbnail Image.png
Description
Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.
ContributorsAnderson, Matthew Brandon (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Rege, Kaushal (Committee member) / Anderson, James (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
150018-Thumbnail Image.png
Description
Parents die during the lives of their children. If the child is an adolescent, that death will impact the student's education immediately or in subsequent years. Findings show the death of a mother does impact the daughter's education. It is imperative educators are willing to work with the student at

Parents die during the lives of their children. If the child is an adolescent, that death will impact the student's education immediately or in subsequent years. Findings show the death of a mother does impact the daughter's education. It is imperative educators are willing to work with the student at the time the death occurs as well as in the ensuing months. Seidman's (2006) three-interview format was used as a template for the interviews of 11 women, ranging in age from 19 to 78 and whose mothers died when the women were adolescents. The interviews were primarily conducted in one sitting, transcribed, and then analyzed for common themes that connected to the research on the topic. Those themes include grieving, the role of caring in education, the role of teacher as the second mother, mother-daughter relationships, and the impact of parent death on schooling. These themes from the data cross cut with thematic strands within the study's theoretical framework: the nurturing and empathetic role of the mother, a desire of the daughter not to be different, and the ethics of caring. Findings in this study reveal that the negative impacts of mother loss are felt in diffuse ways, such as a lack of academic or emotional encouragement. Many women discussed the need and availability of support groups including groups at colleges. One practical implication of these findings is schools need to become caring communities in which caring is the norm for all students and teachers, thereby providing all students with needed support in times of crisis. The implications for further research include the impact of the mother death on the education of daughters, how volunteering with an organization related to the cause of the mother's death assists the daughter and types of programs most important to a student's success in post-secondary education. Adolescents are in a time of great change in their lives, and for a daughter, the loss of a mother has an everlasting, life-changing impact.
ContributorsRatti, Theresa Helen McLuskey (Author) / Mccarty, Teresa L (Thesis advisor) / Fischman, Gustavo E. (Committee member) / Powers, Jeanne M. (Committee member) / Arizona State University (Publisher)
Created2011
149979-Thumbnail Image.png
Description
The purpose of this study was to examine compulsory schooling in the United States and its potential to provide an inconsistent avenue to employment for students from neighborhoods of differing socioeconomic status. Specifically, this study asked why do students from privileged neighborhoods typically end up in positions of ownership and

The purpose of this study was to examine compulsory schooling in the United States and its potential to provide an inconsistent avenue to employment for students from neighborhoods of differing socioeconomic status. Specifically, this study asked why do students from privileged neighborhoods typically end up in positions of ownership and management while those from impoverished urban or rural neighborhoods end up in working-class positions or involved in cycles of incarceration and poverty? This research involved the use of qualitative methods, including participant observation and interview, as well as photography, to take a look at a reputable private day school in the southwest. Data was collected over the span of eight weeks and was then analyzed and compared with preexisting data on the schooling experience of students from impoverished urban and rural neighborhoods, particularly data focused on juvenile detention centers. Results showed that compulsory schooling differs in ways that contribute to the preexisting hierarchical class structure. The research suggests that schooling can be detrimental to the future quality of life for students in impoverished neighborhoods, which questions a compulsory school system that exists within the current hierarchical class system.
ContributorsTheodoropoulos, Eftyhia (Author) / Margolis, Eric (Thesis advisor) / Nakagawa, Kathryn (Committee member) / Appleton, Nicholas (Committee member) / Arizona State University (Publisher)
Created2011
149997-Thumbnail Image.png
Description
This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower

This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development.
ContributorsKiefer, Brian Daniel (Author) / Heydt, Gerald T (Thesis advisor) / Shunk, Dan (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
150029-Thumbnail Image.png
Description
A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with 68dB SNR dissipating 67u¬W from a 1.2V supply. The ADC implements a self calibrating feedback DAC, for calibrating the 2nd order non-linearity. The VGA and power scalable ADC is fabricated on 0.25 um CMOS TSMC process. The dual channels of the DHA are precisely matched and achieve about 0.5dB gain mismatch, resulting in greater than 5dB directivity index. This will enable a highly integrated and low power DHA
ContributorsNaqvi, Syed Roomi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Chae, Junseok (Committee member) / Barnby, Hugh (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2011
150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
150045-Thumbnail Image.png
Description
A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research

A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research explores how low volume fraction nanofluids, composed of common base-fluids, interact with light energy. Comparative experimentation and modeling reveals that absorbing light volumetrically (i.e. in the depth of the fluid) is fundamentally different from surface-based absorption. Depending on the particle material, size, shape, and volume fraction, a fluid can be changed from being mostly transparent to sunlight (in the case of water, alcohols, oils, and glycols) to being a very efficient volumetric absorber of sunlight. This research also visualizes, under high levels of irradiation, how nanofluids undergo interesting, localized phase change phenomena. For this, images were taken of bubble formation and boiling in aqueous nanofluids heated by a hot wire and by a laser. Infrared thermography was also used to quantify this phenomenon. Overall, though, this research reveals the possibility for novel solar collectors in which the working fluid directly absorbs light energy and undergoes phase change in a single step. Modeling results indicate that these improvements can increase a solar thermal receiver's efficiency by up to 10%.
ContributorsTaylor, Robert (Author) / Phelan, Patrick E (Thesis advisor) / Adrian, Ronald (Committee member) / Trimble, Steve (Committee member) / Posner, Jonathan (Committee member) / Maracas, George (Committee member) / Arizona State University (Publisher)
Created2011
149988-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means

Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means of diagnosing the disease before neurodegeneration is significant and sadly there is no cure that controls its progression. The protein beta-amyloid or Aâ plays an important role in the progression of the disease. It is formed from the cleavage of the Amyloid Precursor Protein by two enzymes - â and ã-secretases and is found in the plaques that are deposits found in Alzheimer brains. This work describes the generation of therapeutics based on inhibition of the cleavage by â-secretase. Using in-vitro recombinant antibody display libraries to screen for single chain variable fragment (scFv) antibodies; this work describes the isolation and characterization of scFv that target the â-secretase cleavage site on APP. This approach is especially relevant since non-specific inhibition of the enzyme may have undesirable effects since the enzyme has been shown to have other important substrates. The scFv iBSEC1 successfully recognized APP, reduced â-secretase cleavage of APP and reduced Aâ levels in a cell model of Alzheimer's Disease. This work then describes the first application of bispecific antibody therapeutics to Alzheimer's Disease. iBSEC1 scFv was combined with a proteolytic scFv that enhances the "good" pathway (á-secretase cleavage) that results in alternative cleavage of APP to generate the bispecific tandem scFv - DIA10D. DIA10D reduced APP cleavage by â-secretase and steered it towards the "good" pathway thus increasing the generation of the fragment sAPPá which is neuroprotective. Finally, treatment with iBSEC1 is evaluated for reduced oxidative stress, which is observed in cells over expressing APP when they are exposed to stress. Recombinant antibody based therapeutics like scFv have several advantages since they retain the high specificity of the antibodies but are safer since they lack the constant region and are smaller, potentially facilitating easier delivery to the brain
ContributorsBoddapati, Shanta (Author) / Sierks, Michael (Thesis advisor) / Arizona State University (Publisher)
Created2011