Matching Items (30)
Filtering by

Clear all filters

149873-Thumbnail Image.png
Description
Passive cooling designs & technologies offer great promise to lower energy use in buildings. Though the working principles of these designs and technologies are well understood, simplified tools to quantitatively evaluate their performance are lacking. Cooling by night ventilation, which is the topic of this research, is one of the

Passive cooling designs & technologies offer great promise to lower energy use in buildings. Though the working principles of these designs and technologies are well understood, simplified tools to quantitatively evaluate their performance are lacking. Cooling by night ventilation, which is the topic of this research, is one of the well known passive cooling technologies. The building's thermal mass can be cooled at night by ventilating the inside of the space with the relatively lower outdoor air temperatures, thereby maintaining lower indoor temperatures during the warmer daytime period. Numerous studies, both experimental and theoretical, have been performed and have shown the effectiveness of the method to significantly reduce air conditioning loads or improve comfort levels in those climates where the night time ambient air temperature drops below that of the indoor air. The impact of widespread adoption of night ventilation cooling can be substantial, given the large fraction of energy consumed by air conditioning of buildings (about 12-13% of the total electricity use in U.S. buildings). Night ventilation is relatively easy to implement with minimal design changes to existing buildings. Contemporary mathematical models to evaluate the performance of night ventilation are embedded in detailed whole building simulation tools which require a certain amount of expertise and is a time consuming approach. This research proposes a methodology incorporating two models, Heat Transfer model and Thermal Network model, to evaluate the effectiveness of night ventilation. This methodology is easier to use and the run time to evaluate the results is faster. Both these models are approximations of thermal coupling between thermal mass and night ventilation in buildings. These models are modifications of existing approaches meant to model dynamic thermal response in buildings subject to natural ventilation. Effectiveness of night ventilation was quantified by a parameter called the Discomfort Reduction Factor (DRF) which is the index of reduction of occupant discomfort levels during the day time from night ventilation. Daily and Monthly DRFs are calculated for two climate zones and three building heat capacities. It is verified that night ventilation is effective in seasons and regions when day temperatures are between 30 oC and 36 oC and night temperatures are below 20 oC. The accuracy of these models may be lower than using a detailed simulation program but the loss in accuracy in using these tools more than compensates for the insights provided and better transparency in the analysis approach and results obtained.
ContributorsEndurthy, Akhilesh Reddy (Author) / Reddy, T Agami (Thesis advisor) / Phelan, Patrick (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
151916-Thumbnail Image.png
Description
Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over

Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.
ContributorsErickson, James (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Kroelinger, Michael D. (Committee member) / Reddy, T. Agami (Committee member) / Arizona State University (Publisher)
Created2013
150693-Thumbnail Image.png
Description
A major problem faced by electric utilities is the need to meet electric loads during certain times of peak demand. One of the widely adopted and promising programs is demand response (DR) where building owners are encouraged, by way of financial incentives, to reduce their electric loads during a few

A major problem faced by electric utilities is the need to meet electric loads during certain times of peak demand. One of the widely adopted and promising programs is demand response (DR) where building owners are encouraged, by way of financial incentives, to reduce their electric loads during a few hours of the day when the electric utility is likely to encounter peak loads. In this thesis, we investigate the effect of various DR measures and their resulting indoor occupant comfort implications, on two prototype commercial buildings in the hot and dry climate of Phoenix, AZ. The focus of this study is commercial buildings during peak hours and peak days. Two types of office buildings are modeled using a detailed building energy simulation program (EnergyPlus V6.0.0): medium size office building (53,600 sq. ft.) and large size office building (498,600 sq. ft.). The two prototype buildings selected are those advocated by the Department of Energy and adopted by ASHRAE in the framework of ongoing work on ASHRAE standard 90.1 which reflect 80% of the commercial buildings in the US. After due diligence, the peak time window is selected to be 12:00-18:00 PM (6 hour window). The days when utility companies require demand reduction mostly fall during hot summer days. Therefore, two days, the summer high-peak (15th July) and the mid-peak (29th June) days are selected to perform our investigations. The impact of building thermal mass as well as several other measures such as reducing lighting levels, increasing thermostat set points, adjusting supply air temperature, resetting chilled water temperature are studied using the EnergyPlus building energy simulation program. Subsequently the simulation results are summarized in tabular form so as to provide practical guidance and recommendations of which DR measures are appropriate for different levels of DR reductions and the associated percentage values of people dissatisfied (PPD). This type of tabular recommendations is of direct usefulness to the building owners and operators contemplating DR response. The methodology can be extended to other building types and climates as needed.
ContributorsKhanolkar, Amruta (Author) / Reddy, T Agami (Thesis advisor) / Addison, Marlin (Committee member) / Bryan, Harvey (Committee member) / Arizona State University (Publisher)
Created2012
150762-Thumbnail Image.png
Description
Building Envelope includes walls, roofs and openings, which react to the outdoor environmental condition. Today, with the increasing use of glass in building envelope, the energy usage of the buildings is increasing, especially in the offices and commercial buildings. Use of right glass type and control triggers helps to optimize

Building Envelope includes walls, roofs and openings, which react to the outdoor environmental condition. Today, with the increasing use of glass in building envelope, the energy usage of the buildings is increasing, especially in the offices and commercial buildings. Use of right glass type and control triggers helps to optimize the energy use, by tradeoff between optical and thermal properties. The part of the research looks at the different control triggers and its range that governs the use of electrochromic glass to regulate the energy usage in building. All different control trigger that can be possibly used for regulating the clear and tint state of glass were analyzed with most appropriate range. Its range was triggered such that 80% time of the glass is trigger between the ranges. The other building parameters like window wall ratio and orientations were also investigated. The other half of the research study looks into the feasibility of using the Electrochromic windows, as it is ought to be the main factor governing the market usage of Electrochromic windows and to investigate the possible ways to make it feasible. Different LCC parameters were studied to make it market feasible product. This study shows that installing this technology with most appropriate trigger range can reduce annual building energy consumption from 6-8% but still cost of the technology is 3 times the ASHRAE glass, which results in 70-90 years of payback. This study concludes that south orientation saves up to 3-5% of energy and 4-6% of cooling tons while north orientation gives negligible saving using EC glass. LCC parameters show that there is relative change in increasing the net saving for different parameters but none except 50% of the present glass cost is the possible option where significant change is observed.
ContributorsMunshi, Kavish Prakash (Author) / Bryan, Harvey (Thesis advisor) / Reddy, Agami (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2012
150463-Thumbnail Image.png
Description
The Urban Heat Island (UHI) has been known to have been around from as long as people have been urbanizing. The growth and conglomeration of cities in the past century has caused an increase in the intensity and impact of Urban Heat Island, causing significant changes to the micro-climate and

The Urban Heat Island (UHI) has been known to have been around from as long as people have been urbanizing. The growth and conglomeration of cities in the past century has caused an increase in the intensity and impact of Urban Heat Island, causing significant changes to the micro-climate and causing imbalances in the temperature patterns of cities. The urban heat island (UHI) is a well established phenomenon and it has been attributed to the reduced heating loads and increased cooling loads, impacting the total energy consumption of affected buildings in all climatic regions. This thesis endeavors to understand the impact of the urban heat island on the typical buildings in the Phoenix Metropolitan region through an annual energy simulation process spanning through the years 1950 to 2005. Phoenix, as a representative city for the hot-arid cooling-dominated region, would be an interesting example to see how the reduction in heating energy consumption offsets the increased demand for cooling energy in the building. The commercial reference building models from the Department of Energy have been used to simulate commercial building stock, while for the residential stock a representative residential model prescribing to IECC 2006 standards will be used. The multiyear simulation process will bring forth the energy consumptions of various building typologies, thus highlighting differing impacts on the various building typologies. A vigorous analysis is performed to see the impact on the cooling loads annually, specifically during summer and summer nights, when the impact of the 'atmospheric canopy layer' - urban heat island (UHI) causes an increase in the summer night time minimum and night time average temperatures. This study also shows the disparity in results of annual simulations run utilizing a typical meteorological year (TMY) weather file, to that of the current recorded weather data. The under prediction due to the use of TMY would translate to higher or lower predicted energy savings in the future years, for changes made to the efficiencies of the cooling or heating systems and thermal performance of the built-forms. The change in energy usage patterns caused by higher cooling energy and lesser heating energy consumptions could influence future policies and energy conservation standards. This study could also be utilized to understand the impacts of the equipment sizing protocols currently adopted, equipment use and longevity and fuel swapping as heating cooling ratios change.
ContributorsDoddaballapur, Sandeep (Author) / Bryan, Harvey (Thesis advisor) / Reddy, Agami T (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
136180-Thumbnail Image.png
Description
Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this

Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this paper investigates, for the first time, mixtures of water and the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) through a combined experimental and molecular dynamics study. The density, melting point, viscosity and conductivity of these mixtures were measured experimentally. The composition region below 50% water by mole was found to be dramatically different from the region above 50% water, with trends in density and melting point differing before and after that point. Water was found to have a profound effect on viscosity and conductivity of the IL, and the effect of hydrogen bonding was discussed. Molecular dynamics simulations representing the same mixture compositions were performed. Molecular ordering was observed, as were changes in this ordering corresponding to water content. Molecular ordering was related to the experimentally measured mixture properties, providing a possible explanation for the two distinct composition regions identified by experiment.
ContributorsNgan, Miranda L (Author) / Dai, Lenore (Thesis director) / Nofen, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136591-Thumbnail Image.png
Description
Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary

Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary water treatment or as a medical disinfectant, among many other uses. Various carbon-based catalysts and binders for use at the cathode of a an MFC for H2O2 production are explored using linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) techniques. The oxygen reduction reaction (ORR) at the cathode has slow kinetics at conditions present in the MFC, making it important to find a catalyst type and loading which promote a 2e- (rather than 4e-) reaction to maximize H2O2 formation. Using LSV methods, I compared the cathodic overpotentials associated with graphite and Vulcan carbon catalysts as well as Nafion and AS-4 binders. Vulcan carbon catalyst with Nafion binder produced the lowest overpotentials of any binder/catalyst combinations. Additionally, I determined that pH control may be required at the cathode due to large potential losses caused by hydroxide (OH-) concentration gradients. Furthermore, RRDE tests indicate that Vulcan carbon catalyst with a Nafion binder has a higher H2O2 production efficiency at lower catalyst loadings, but the trade-off is a greater potential loss due to higher activation energy. Therefore, an intermediate catalyst loading of 0.5 mg/cm2 Vulcan carbon with Nafion binder is recommended for the final MFC design. The chosen catalyst, binder, and loading will maximize H2O2 production, optimize MFC performance, and minimize the need for additional energy input into the system.
ContributorsStadie, Mikaela Johanna (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136927-Thumbnail Image.png
Description
The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP

The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP mixtures as well as graphene/LFP mixtures and a synthesized graphene/LFP nanocomposite. Graphene synthesis was attempted before purchasing graphene materials, and further exploration of graphene synthesis is recommended due to limitations in purchased product quality. While it was determined after extensive experimentation that the graphene/LFP nanocomposite could not be successfully synthesized according to current literature information, a mixed composite of graphene/LFP was successfully tested and found to have k = 0.23 W/m*K. This result provides a starting point for further thermal testing method development and k optimization in Li-ion battery electrode nanocomposites.
ContributorsStehlik, Daniel Wesley (Author) / Chan, Candace K. (Thesis director) / Dai, Lenore (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
137034-Thumbnail Image.png
Description
The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.
ContributorsLau, Ching Yan (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Lively, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05