Matching Items (35)
Filtering by

Clear all filters

150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011
150339-Thumbnail Image.png
Description
A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air

A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air that is stored in a tank at a particular pressure will be introduced during the compression stage of the engine cycle to reduce pump work. In the modified design the intake and exhaust valve timings are modified to achieve this process. The time required to fill the combustion chamber with compressed air to the storage pressure immediately before spark and the state of the air with respect to crank angle is modeled numerically using a crank step energy and mass balance model. The results are used to complete the engine cycle analysis based on air standard assumptions and air to fuel ratio of 15 for gasoline. It is found that at the baseline storage conditions (280 psi, 70OF) the modified engine does not meet the imposed constraints of staying below the maximum pressure of the unmodified engine. A new storage pressure of 235 psi is recommended. This only provides a 7.7% increase in thermal efficiency for the same work output. The modification of this engine for this low efficiency gain is not recommended.
ContributorsJoy, Lijin (Author) / Trimble, Steve (Thesis advisor) / Davidson, Joseph (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
149873-Thumbnail Image.png
Description
Passive cooling designs & technologies offer great promise to lower energy use in buildings. Though the working principles of these designs and technologies are well understood, simplified tools to quantitatively evaluate their performance are lacking. Cooling by night ventilation, which is the topic of this research, is one of the

Passive cooling designs & technologies offer great promise to lower energy use in buildings. Though the working principles of these designs and technologies are well understood, simplified tools to quantitatively evaluate their performance are lacking. Cooling by night ventilation, which is the topic of this research, is one of the well known passive cooling technologies. The building's thermal mass can be cooled at night by ventilating the inside of the space with the relatively lower outdoor air temperatures, thereby maintaining lower indoor temperatures during the warmer daytime period. Numerous studies, both experimental and theoretical, have been performed and have shown the effectiveness of the method to significantly reduce air conditioning loads or improve comfort levels in those climates where the night time ambient air temperature drops below that of the indoor air. The impact of widespread adoption of night ventilation cooling can be substantial, given the large fraction of energy consumed by air conditioning of buildings (about 12-13% of the total electricity use in U.S. buildings). Night ventilation is relatively easy to implement with minimal design changes to existing buildings. Contemporary mathematical models to evaluate the performance of night ventilation are embedded in detailed whole building simulation tools which require a certain amount of expertise and is a time consuming approach. This research proposes a methodology incorporating two models, Heat Transfer model and Thermal Network model, to evaluate the effectiveness of night ventilation. This methodology is easier to use and the run time to evaluate the results is faster. Both these models are approximations of thermal coupling between thermal mass and night ventilation in buildings. These models are modifications of existing approaches meant to model dynamic thermal response in buildings subject to natural ventilation. Effectiveness of night ventilation was quantified by a parameter called the Discomfort Reduction Factor (DRF) which is the index of reduction of occupant discomfort levels during the day time from night ventilation. Daily and Monthly DRFs are calculated for two climate zones and three building heat capacities. It is verified that night ventilation is effective in seasons and regions when day temperatures are between 30 oC and 36 oC and night temperatures are below 20 oC. The accuracy of these models may be lower than using a detailed simulation program but the loss in accuracy in using these tools more than compensates for the insights provided and better transparency in the analysis approach and results obtained.
ContributorsEndurthy, Akhilesh Reddy (Author) / Reddy, T Agami (Thesis advisor) / Phelan, Patrick (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
150194-Thumbnail Image.png
Description
Processed pyro-gel contains castor oil with solid component of boehmite (Al-OOH). The pyro-gel is synthesized by heat to convert boehmite to gamma-Al2O3 and to a certain extent alpha-Al2O3 nano-particles and castor oil into carbon residue. The effect of heat on pyro-gel is analyzed in a series of experiments using two

Processed pyro-gel contains castor oil with solid component of boehmite (Al-OOH). The pyro-gel is synthesized by heat to convert boehmite to gamma-Al2O3 and to a certain extent alpha-Al2O3 nano-particles and castor oil into carbon residue. The effect of heat on pyro-gel is analyzed in a series of experiments using two burning chambers with the initial temperature as the main factor. The obtained temperature distribution profiles are studied and it is observed that the gel behaves very close to the theoretical prediction under heat. The carbon residue with Al2O3 is then processed for twelve hours and then analyzed to obtain the pore distribution of the Al2O3 nano-particles and the relation between the pore volume and the pre-heat temperature is analyzed. The obtained pore distribution shows the pore volume of Al2O3 nano-particles has direct relation to the pre-heat temperature. The experimental process involving the cylindrical reactor is simulated by using a finite rate chemistry eddy-dissipation model in a non-premixed and a porous mesh. The temperature distribution profile of the processed gel for both the meshes is obtained and a comparison is done with the data obtained in the experimental analysis. The temperature distribution obtained from the simulations show they follow a very similar profile to the temperature distribution obtained from experimental analysis, thus confirming the accuracy of both the models. The variation in numerical values between the experimental and simulation analysis is discussed. A physical model is proposed to determine the pore formation based on the temperature distribution obtained from experimental analysis and simulation.
ContributorsSagi, Varun (Author) / Lee, Taewoo (Thesis advisor) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2010
150422-Thumbnail Image.png
Description
Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing

Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing U.S. building energy use commercial sector buildings must be improved. Energy benchmarking of buildings gives the facility manager or the building owner a quick evaluation of energy use and the potential for energy savings. It is the process of comparing the energy performance of a building to standards and codes, to a set target performance or to a range of energy performance values of similar buildings in order to help assess opportunities for improvement. Commissioning of buildings is the process of ensuring that systems are designed, installed, functionally tested and capable of being operated and maintained according to the owner's operational needs. It is the first stage in the building upgrade process after it has been assessed using benchmarking tools. The staged approach accounts for the interactions among all the energy flows in a building and produces a systematic method for planning upgrades that increase energy savings. This research compares and analyzes selected benchmarking and retrocommissioning tools to validate their accuracy such that they could be used in the initial audit process of a building. The benchmarking study analyzes the Energy Use Intensities (EUIs) and Ratings assigned by Portfolio Manager and Oak Ridge National Laboratory (ORNL) Spreadsheets. The 90.1 Prototype models and Commercial Reference Building model for Large Office building type were used for this comparative analysis. A case-study building from the DOE - funded Energize Phoenix program was also benchmarked for its EUI and rating. The retrocommissioning study was conducted by modeling these prototype models and the case-study building in the Facility Energy Decision System (FEDS) tool to simulate their energy consumption and analyze the retrofits suggested by the tool. The results of the benchmarking study proved that a benchmarking tool could be used as a first step in the audit process, encouraging the building owner to conduct an energy audit and realize the energy savings potential. The retrocommissioning study established the validity of FEDS as an accurate tool to simulate a building for its energy performance using basic inputs and to accurately predict the energy savings achieved by the retrofits recommended on the basis of maximum LCC savings.
ContributorsAgnihotri, Shreya Prabodhkumar (Author) / Reddy, T Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
151100-Thumbnail Image.png
Description
The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.
ContributorsPeyton-Levine, Tobin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
141391-Thumbnail Image.png
Description

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This growth has manifested itself as a cause of various impacts including elevated urban temperatures in comparison to rural sites known as the Urban Heat Island (UHI) effect [Oke, T.R., 1982. The energetic basis of the urban heat island. Q. J. R. Meteor. Soc. 108, 1–24]. Related are the increased demands for electric power as a result of population growth and increased need for mechanical cooling due to the UHI. In the United States, the Environmental Protection Agency has developed a three-prong approach of (1) cool pavements, (2) urban forestry and (3) cool roofs to mitigate the UHI. Researchers undertook an examination of micro scale benefits of the utilization of photovoltaic panels to reduce the thermal impacts to surface temperatures of pavements in comparison to urban forestry. The results of the research indicate that photovoltaic panels provide a greater thermal reduction benefit during the diurnal cycle in comparison to urban forestry while also providing the additional benefits of supporting peak energy demand, conserving water resources and utilizing a renewable energy source.

ContributorsGolden, Jay S. (Author) / Carlson, Joby (Author) / Kaloush, Kamil (Author) / Phelan, Patrick (Author)
Created2006-12-26
149408-Thumbnail Image.png
Description
This study analyzes the thermoelectric phenomena of nanoparticle suspensions, which are composed of liquid and solid nanoparticles that show a relatively stable Seebeck coefficient as bulk solids near room temperature. The approach is to explore the thermoelectric character of the nanoparticle suspensions, predict the outcome of the experiment and compare

This study analyzes the thermoelectric phenomena of nanoparticle suspensions, which are composed of liquid and solid nanoparticles that show a relatively stable Seebeck coefficient as bulk solids near room temperature. The approach is to explore the thermoelectric character of the nanoparticle suspensions, predict the outcome of the experiment and compare the experimental data with anticipated results. In the experiment, the nanoparticle suspension is contained in a 15cm*2.5cm*2.5cm glass container, the temperature gradient ranges from 20 °C to 60 °C, and room temperature fluctuates from 20 °C to 23°C. The measured nanoparticles include multiwall carbon nanotubes, aluminum dioxide and bismuth telluride. A temperature gradient from 20 °C to 60 °C is imposed along the length of the container, and the resulting voltage (if any) is measured. Both heating and cooling processes are measured. With three different nanoparticle suspensions (carbon nano tubes, Al2O3 nanoparticles and Bi2Te3 nanoparticles), the correlation between temperature gradient and voltage is correspondingly 8%, 38% and 96%. A comparison of results calculated from the bulk Seebeck coefficients with our measured results indicate that the Seebeck coefficient measured for each suspension is much more than anticipated, which indicates that the thermophoresis effect could have enhanced the voltage. Further research with a closed-loop system might be able to affirm the results of this study.
ContributorsZhu, Moxuan (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2010
149421-Thumbnail Image.png
Description
Phase Change Material (PCM) plays an important role as a thermal energy storage device by utilizing its high storage density and latent heat property. One of the potential applications for PCM is in buildings by incorporating them in the envelope for energy conservation. During the summer season, the benefits are

Phase Change Material (PCM) plays an important role as a thermal energy storage device by utilizing its high storage density and latent heat property. One of the potential applications for PCM is in buildings by incorporating them in the envelope for energy conservation. During the summer season, the benefits are a decrease in overall energy consumption by the air conditioning unit and a time shift in peak load during the day. Experimental work was carried out by Arizona Public Service (APS) in collaboration with Phase Change Energy Solutions (PCES) Inc. with a new class of organic-based PCM. This "BioPCM" has non-flammable properties and can be safely used in buildings. The experimental setup showed maximum energy savings of about 30%, a maximum peak load shift of ~ 60 min, and maximum cost savings of about 30%. Simulation was performed to validate the experimental results. EnergyPlus was chosen as it has the capability to simulate phase change material in the building envelope. The building material properties were chosen from the ASHRAE Handbook - Fundamentals and the HVAC system used was a window-mounted heat pump. The weather file used in the simulation was customized for the year 2008 from the National Renewable Energy Laboratory (NREL) website. All EnergyPlus inputs were ensured to match closely with the experimental parameters. The simulation results yielded comparable trends with the experimental energy consumption values, however time shifts were not observed. Several other parametric studies like varying PCM thermal conductivity, temperature range, location, insulation R-value and combination of different PCMs were analyzed and results are presented. It was found that a PCM with a melting point from 23 to 27 °C led to maximum energy savings and greater peak load time shift duration, and is more suitable than other PCM temperature ranges for light weight building construction in Phoenix.
ContributorsMuruganantham, Karthik (Author) / Phelan, Patrick (Thesis advisor) / Reddy, Agami (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2010
132733-Thumbnail Image.png
Description
Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building

Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building and maintenance costs, and the isolation of nuclear plants from populated areas. The goal of this project was to analyze the thermal performance of nanocrystalline copper tantalum (NC Cu-Ta) inside the steam generator of a pressurized water reactor to see how much the size of these units could be reduced without affecting the amount of heat transferred through it. The analysis revealed that using this material, with its higher thermal conductivity than the traditional Inconel Alloy 600 that is typically used in steam generators, it is possible to reduce the height of a steam generator from 21 meters to about 18.6 meters, signifying a 11.6% reduction in height. This analysis also revealed a diminishing return that occurs with increasing the thermal conductivity on both reducing the required heat transfer area and increasing the overall heat transfer coefficient.
ContributorsRiese, Alexander (Author) / Phelan, Patrick (Thesis director) / Bocanegra, Luis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05