Matching Items (763)
Filtering by

Clear all filters

Description
Delirium is a piece for large wind ensemble that synthesizes compositional techniques to generate unique juxtapositions of contrasting musical elements. The piece is about 8:30 long and uses the full complement of winds, brass, and percussion. Although the composition begins tonally, chromatic alterations gradually shift the melodic content outside of

Delirium is a piece for large wind ensemble that synthesizes compositional techniques to generate unique juxtapositions of contrasting musical elements. The piece is about 8:30 long and uses the full complement of winds, brass, and percussion. Although the composition begins tonally, chromatic alterations gradually shift the melodic content outside of the tonal center. In addition to changes in the melody, octatonic, chromatic, and synthetic scales and quartal and quintal harmonies are progressively introduced throughout the piece to add color and create dissonance. Delirium contains four primary sections that are all related by chromatic mediant. The subdivisions of the first part create abrupt transitions between contrasting material, evocative of the symptoms of delirium. As each sub-section progresses, the A minor tonality of the opening gradually gives way to increased chromaticism and dissonance. The next area transitions to C minor and begins to feature octatonic scales, secundal harmonies, and chromatic flourishes more prominently. The full sound of the ensemble then drops to solo instruments in the third section, now in G# minor, where the elements of the previous section are built upon with the addition of synthetic scales and quartal harmonies. The last division, before the recapitulation of the opening material, provides a drastic change in atmosphere as the chromatic elements from before are removed and the tense sound of the quartal harmonies are replaced with quintal sonorities and a more tonal melody. The tonality of this final section is used to return to the opening material. After an incomplete recapitulation, the descending motive that is used throughout the piece, which can be found in measure 61 in the flutes, is inverted and layered by minor 3rds. This inverted figure builds to the same sonority found in measure138, before ending on an F# chord, a minor third away from the A minor tonal center of the opening and where the piece seems like it should end.
ContributorsBell, Jeremy, 1986- (Composer) / Rogers, Rodney (Thesis advisor) / Oldani, Robert (Committee member) / Levy, Benjamin (Committee member) / Arizona State University (Publisher)
Created2011
149790-Thumbnail Image.png
Description
Dr. Jerold D. Ottley's twenty-five years leading the Mormon Tabernacle Choir resulted in many distinguished awards and recognitions for the ensemble. Included among these are two Platinum and three Gold records from the Recording Industry Association of America, an Emmy from the Academy of Television Arts and Sciences, and two

Dr. Jerold D. Ottley's twenty-five years leading the Mormon Tabernacle Choir resulted in many distinguished awards and recognitions for the ensemble. Included among these are two Platinum and three Gold records from the Recording Industry Association of America, an Emmy from the Academy of Television Arts and Sciences, and two Freedom Foundation Awards for service to the country. He conducted the Choir at two presidential inaugurations, Ronald Reagan's in 1981 and George H. W. Bush's in 1989, as well as performances at the 1984 Los Angeles Olympics Gala. He presided over eleven international tours to twenty-six countries and crisscrossed the United States for engagements in nearly every region of the country. Despite the awards, commendations, and increased recognition of the Choir, Ottley's greatest contributions were largely internal to the organization. Jerold Ottley is a skilled music educator, administrator, and emissary. Application of these proficiencies while at the helm of the Choir, led to what are, arguably, his three largest contributions: 1) as educator, he instituted in-service training for choir members, raising the level of their individual musicianship, thereby improving the technical level of the entire Choir; 2) as administrator, Ottley created policies and procedures that resulted in a more disciplined, refined ensemble; and 3) as emissary, he raised the ensemble's reputation among the general public and with music professionals. For the general public, he significantly broadened the Choir's repertoire and traveled frequently thereby reaching a wider audience. He secured greater respect among music professionals by inviting many of them to work directly with the Choir. The results were unparalleled. Ottley's twenty-five year tenure with the Choir is reflected in broader audiences, increased professional acceptance, added organizational discipline, and unprecedented musical proficiency. It is a notable legacy for a man who reportedly never felt comfortable as director of the Mormon Tabernacle Choir.
ContributorsArchibald, Lyle Jay (Author) / Gentry, Gregory (Thesis advisor) / Britton, David (Committee member) / DeMars, James (Committee member) / Doan, Jerry (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2011
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011
Description
In the last few decades, the rapid development of electronic music technologies has changed the way society interacts with music, which in turn impacts the profession of music therapy. Except for a few cases, music therapy has not extensively explored the integration of new technology. However, current research trends show

In the last few decades, the rapid development of electronic music technologies has changed the way society interacts with music, which in turn impacts the profession of music therapy. Except for a few cases, music therapy has not extensively explored the integration of new technology. However, current research trends show a willingness and excitement to explore the possibilities (Nagler, 2011; Ramsey, 2011; Magee, et al., 2011; Magee & Burland, 2008; Magee 2006). The project described in this paper intends to demonstrate one of these possibilities by combining modern technologies to create an interactive musical system with practical applications in music therapy. In addition to designing a practical tool, the project aims to question the role of technology in music therapy and to initiate dialogue between technologists and music therapists. The project, entitled MIST: A Musical Interactive Space for Therapy, uses modern gestural technology (the Microsoft® Kinect®) to capture body movements and turn them into music. It is intended for use in a clinical setting with children with mild to moderate disabilities. The system is a software/hardware package that is inexpensive, user-friendly, and portable. There are two functional modes of the system: the first sonifies specific movement tasks of reaching and balancing; the second is an interactive musical play space in which an entire room becomes responsive to presence and movement, creating a sonic playground. The therapeutic goals of the system are to motivate and train physical movement, encourage exploration of space and the body, and allow for musical expression, play, auditory perception, and social interaction.
ContributorsHeadlee, Kimberlee (Author) / Ingalls, Todd M (Thesis advisor) / Crowe, Barbara J. (Thesis advisor) / Stauffer, Sandra L (Committee member) / Arizona State University (Publisher)
Created2011
150333-Thumbnail Image.png
Description
A systematic approach to composition has been used by a variety of composers to control an assortment of musical elements in their pieces. This paper begins with a brief survey of some of the important systematic approaches that composers have employed in their compositions, devoting particular attention to Pierre Boulez's

A systematic approach to composition has been used by a variety of composers to control an assortment of musical elements in their pieces. This paper begins with a brief survey of some of the important systematic approaches that composers have employed in their compositions, devoting particular attention to Pierre Boulez's Structures Ia . The purpose of this survey is to examine several systematic approaches to composition by prominent composers and their philosophy in adopting this type of approach. The next section of the paper introduces my own systematic approach to composition: the Take-Away System. The third provides several musical applications of the system, citing my work, Octulus for two pianos, as an example. The appendix details theorems and observations within the system for further study.
ContributorsHarbin, Doug (Author) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Etezady, Roshanne, 1973- (Committee member) / Rockmaker, Jody (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2011
150339-Thumbnail Image.png
Description
A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air

A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air that is stored in a tank at a particular pressure will be introduced during the compression stage of the engine cycle to reduce pump work. In the modified design the intake and exhaust valve timings are modified to achieve this process. The time required to fill the combustion chamber with compressed air to the storage pressure immediately before spark and the state of the air with respect to crank angle is modeled numerically using a crank step energy and mass balance model. The results are used to complete the engine cycle analysis based on air standard assumptions and air to fuel ratio of 15 for gasoline. It is found that at the baseline storage conditions (280 psi, 70OF) the modified engine does not meet the imposed constraints of staying below the maximum pressure of the unmodified engine. A new storage pressure of 235 psi is recommended. This only provides a 7.7% increase in thermal efficiency for the same work output. The modification of this engine for this low efficiency gain is not recommended.
ContributorsJoy, Lijin (Author) / Trimble, Steve (Thesis advisor) / Davidson, Joseph (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
150356-Thumbnail Image.png
Description
The purpose of this study was to examine the effects of an after-school music program on music underachievers' musical achievement, social development and self-esteem. A true-experimental pretest-posttest design was used and included 14 hours of treatment time. The subjects (N = 66), fifth-grade students were randomly selected from the lowest

The purpose of this study was to examine the effects of an after-school music program on music underachievers' musical achievement, social development and self-esteem. A true-experimental pretest-posttest design was used and included 14 hours of treatment time. The subjects (N = 66), fifth-grade students were randomly selected from the lowest quartile of scores on Colwell's Music Achievement Test (MAT), which was administered to all fifth-grade students (N = 494) in three Korean elementary schools. The treatment group (n =33) experienced a movement-based after-school music program (MAMP); the control group (n = 33) did not receive the after-school music program. Measurements included sections of Colwell's Music Achievement Test (MAT), Kim's Social Development Scale (SDS), and Hare's Self-Esteem Scale (HSS). The researcher and music teachers of each school administered all measurements. Fourteen treatment lessons occurred over fourteen weeks. One-way analyses of covariance tests were used to test for post-test differences between groups. A significant difference was found in music achievement total scores of the MAT with the treatment group scoring higher scores than the control group. There were no significant differences for interval and meter discrimination tests of MAT. There were no significant differences between treatment and control groups in the post-test scores of the Social Development Scale (SDS) and the Self-Esteem Scale (HSS). However, for both tests, mean scores increased for the treatment group and decreased for the control group. Results from this study suggest that a movement-based after-school music program promotes music underachievers' musical growth and may also support music underachievers' social development and self-esteem.
ContributorsYun, Gwan Ki (Author) / Stauffer, Sandra L (Thesis advisor) / Bush, Jeffrey B (Committee member) / Schmidt, Margaret T (Committee member) / Sullivan, Jill M (Committee member) / Tobias, Evan (Committee member) / Arizona State University (Publisher)
Created2011
150358-Thumbnail Image.png
Description
During the twentieth-century, the dual influence of nationalism and modernism in the eclectic music from Latin America promoted an idiosyncratic style which naturally combined traditional themes, popular genres and secular music. The saxophone, commonly used as a popular instrument, started to develop a prominent role in Latin American classical music

During the twentieth-century, the dual influence of nationalism and modernism in the eclectic music from Latin America promoted an idiosyncratic style which naturally combined traditional themes, popular genres and secular music. The saxophone, commonly used as a popular instrument, started to develop a prominent role in Latin American classical music beginning in 1970. The lack of exposure and distribution of the Latin American repertoire has created a general perception that composers are not interested in the instrument, and that Latin American repertoire for classical saxophone is minimal. However, there are more than 1100 works originally written for saxophone in the region, and the amount continues to grow. This Modern Latin American Repertoire for Classical Saxophone: Recording Project and Performance Guide document establishes and exhibits seven works by seven representative Latin American composers.The recording includes works by Carlos Gonzalo Guzman (Colombia), Ricardo Tacuchian (Brazil), Roque Cordero (Panama), Luis Naón (Argentina), Andrés Alén-Rodriguez (Cuba), Alejandro César Morales (Mexico) and Jose-Luis Maúrtua (Peru), featuring a range of works for solo alto saxophone to alto saxophone with piano, alto saxophone with vibraphone, and tenor saxophone with electronic tape; thus forming an important selection of Latin American repertoire. Complete recorded performances of all seven pieces are supplemented by biographical, historical, and performance practice suggestions. The result is a written and audio guide to some of the most important pieces composed for classical saxophone in Latin America, with an emphasis on fostering interest in, and research into, composers who have contributed in the development and creation of the instrument in Latin America.
ContributorsOcampo Cardona, Javier Andrés (Author) / McAllister, Timothy (Thesis advisor) / Spring, Robert (Committee member) / Hill, Gary (Committee member) / Pilafian, Sam (Committee member) / Rogers, Rodney (Committee member) / Gardner, Joshua (Committee member) / Arizona State University (Publisher)
Created2011
149873-Thumbnail Image.png
Description
Passive cooling designs & technologies offer great promise to lower energy use in buildings. Though the working principles of these designs and technologies are well understood, simplified tools to quantitatively evaluate their performance are lacking. Cooling by night ventilation, which is the topic of this research, is one of the

Passive cooling designs & technologies offer great promise to lower energy use in buildings. Though the working principles of these designs and technologies are well understood, simplified tools to quantitatively evaluate their performance are lacking. Cooling by night ventilation, which is the topic of this research, is one of the well known passive cooling technologies. The building's thermal mass can be cooled at night by ventilating the inside of the space with the relatively lower outdoor air temperatures, thereby maintaining lower indoor temperatures during the warmer daytime period. Numerous studies, both experimental and theoretical, have been performed and have shown the effectiveness of the method to significantly reduce air conditioning loads or improve comfort levels in those climates where the night time ambient air temperature drops below that of the indoor air. The impact of widespread adoption of night ventilation cooling can be substantial, given the large fraction of energy consumed by air conditioning of buildings (about 12-13% of the total electricity use in U.S. buildings). Night ventilation is relatively easy to implement with minimal design changes to existing buildings. Contemporary mathematical models to evaluate the performance of night ventilation are embedded in detailed whole building simulation tools which require a certain amount of expertise and is a time consuming approach. This research proposes a methodology incorporating two models, Heat Transfer model and Thermal Network model, to evaluate the effectiveness of night ventilation. This methodology is easier to use and the run time to evaluate the results is faster. Both these models are approximations of thermal coupling between thermal mass and night ventilation in buildings. These models are modifications of existing approaches meant to model dynamic thermal response in buildings subject to natural ventilation. Effectiveness of night ventilation was quantified by a parameter called the Discomfort Reduction Factor (DRF) which is the index of reduction of occupant discomfort levels during the day time from night ventilation. Daily and Monthly DRFs are calculated for two climate zones and three building heat capacities. It is verified that night ventilation is effective in seasons and regions when day temperatures are between 30 oC and 36 oC and night temperatures are below 20 oC. The accuracy of these models may be lower than using a detailed simulation program but the loss in accuracy in using these tools more than compensates for the insights provided and better transparency in the analysis approach and results obtained.
ContributorsEndurthy, Akhilesh Reddy (Author) / Reddy, T Agami (Thesis advisor) / Phelan, Patrick (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011