Matching Items (350)
Filtering by

Clear all filters

150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
149707-Thumbnail Image.png
Description
Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.
ContributorsAnderson, Matthew Brandon (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Rege, Kaushal (Committee member) / Anderson, James (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
149997-Thumbnail Image.png
Description
This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower

This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development.
ContributorsKiefer, Brian Daniel (Author) / Heydt, Gerald T (Thesis advisor) / Shunk, Dan (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
150000-Thumbnail Image.png
Description
This study explored female identity formation, of Ethiopian women and women of Ethiopian heritage as they participate in a coffee (buna) ceremony ritual. The study is anchored in the theoretical framework of a sociocultural perspective which enabled an examination of culture as what individuals do and believe as they

This study explored female identity formation, of Ethiopian women and women of Ethiopian heritage as they participate in a coffee (buna) ceremony ritual. The study is anchored in the theoretical framework of a sociocultural perspective which enabled an examination of culture as what individuals do and believe as they participate in mutually constituted activities. Participants in Ethiopia were asked to photograph their daily routine beginning from the time they awoke until they retired for the night. Thematic analysis of the photographs determined that all participants depicted participation in the Ethiopian coffee ceremony in their photo study. Utilizing the photographs which specifically depicted the ceremony, eight focus groups and one interview consisting of women who have migrated from Ethiopia to Arizona, responded to the typicality of the photographs, as well as what they liked or did not like about the photographs. Focus groups were digitally recorded then transcribed for analysis. A combination of coding, extrapolation of rich texts, and identifying themes and patterns were used to analyze transcripts of the focus groups and interview. The findings suggest that this context is rich with shared meanings pertaining to: material artifacts, gender socialization, creation of a space for free expression, social expectations for communal contributions, and a female rite of passage.
ContributorsPlatt, Jennifer Brinkerhoff, 1971- (Author) / Arzubiaga, Angela (Thesis advisor) / Nakagawa, Kathryn (Thesis advisor) / Warriner, Doris (Committee member) / Arizona State University (Publisher)
Created2011
150045-Thumbnail Image.png
Description
A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research

A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research explores how low volume fraction nanofluids, composed of common base-fluids, interact with light energy. Comparative experimentation and modeling reveals that absorbing light volumetrically (i.e. in the depth of the fluid) is fundamentally different from surface-based absorption. Depending on the particle material, size, shape, and volume fraction, a fluid can be changed from being mostly transparent to sunlight (in the case of water, alcohols, oils, and glycols) to being a very efficient volumetric absorber of sunlight. This research also visualizes, under high levels of irradiation, how nanofluids undergo interesting, localized phase change phenomena. For this, images were taken of bubble formation and boiling in aqueous nanofluids heated by a hot wire and by a laser. Infrared thermography was also used to quantify this phenomenon. Overall, though, this research reveals the possibility for novel solar collectors in which the working fluid directly absorbs light energy and undergoes phase change in a single step. Modeling results indicate that these improvements can increase a solar thermal receiver's efficiency by up to 10%.
ContributorsTaylor, Robert (Author) / Phelan, Patrick E (Thesis advisor) / Adrian, Ronald (Committee member) / Trimble, Steve (Committee member) / Posner, Jonathan (Committee member) / Maracas, George (Committee member) / Arizona State University (Publisher)
Created2011
150012-Thumbnail Image.png
Description
This dissertation examines associations between religious affiliation, religious community context and health of women and their children in Mozambique focusing on the following issues: (1) attending prenatal consultations and delivering children in a health facility; (2) women's symptoms of STDs; and (3) under-five mortality. Estimation of random intercept Poisson regression

This dissertation examines associations between religious affiliation, religious community context and health of women and their children in Mozambique focusing on the following issues: (1) attending prenatal consultations and delivering children in a health facility; (2) women's symptoms of STDs; and (3) under-five mortality. Estimation of random intercept Poisson regression for the outcome about attending prenatal consultations demonstrated a favorable effect of affiliation to Catholic or Mainline Protestant and Apostolic religious groups. The concentration of Zionist churches in the community had a negative influence. Random intercept logistic regression was used to estimate the relationship between religion and institutional child delivery. Affiliation to Catholic or Mainline Protestant denominations as well as concentration of Catholic or Mainline Protestant churches in the community had some beneficial effect on giving birth in health clinics. The presence of Zionist churches in the community had some negative effect and that of other groups no significant influence. Random intercept logistic regression was also employed for investigating the influence of religion on women's symptoms of STDs. Belonging to the Catholic or Mainline Protestant church had some protective effect on reporting symptoms of STDs. There was no effect of religious context, except that the concentration of Other Pentecostal churches had a positive effect on reporting symptoms of SDTs. Event-history analysis was conducted for examining relationships between maternal religious affiliation with under-five mortality. Affiliation to Catholic or Mainline Protestant churches and to Apostolic denominations increased the odds of child survival, although, the influence of having a mother belonging to Catholic or Mainline Protestant churches lost statistical significance after accounting particularly for the average level of education in the community, for the period of 5 years preceding the survey date. Taken together, the results in this dissertation show some protective effect of religion that varies primarily by denominational group to which women are affiliated. They also indicate that religious community context may have some negative effect on health of women and children. The nature of the effect of religious community context varies with the type of outcome considered and the type of religious mixture in the community.
ContributorsCau, Boaventura Manuel (Author) / Agadjanian, Victor (Thesis advisor) / Hayford, Sarah (Committee member) / Yabiku, Scott (Committee member) / Arizona State University (Publisher)
Created2011
149733-Thumbnail Image.png
Description
Historians often characterize first ladies in the Progressive Era as representatives of the last vestiges of Victorian womanhood in an increasingly modern society. This dissertation argues that first ladies negotiated an image of themselves that fulfilled both traditional and modern notions of womanhood. In crafting these images, first ladies constructed

Historians often characterize first ladies in the Progressive Era as representatives of the last vestiges of Victorian womanhood in an increasingly modern society. This dissertation argues that first ladies negotiated an image of themselves that fulfilled both traditional and modern notions of womanhood. In crafting these images, first ladies constructed images of their celebrity selves that were uniquely modern. Thus, images of first ladies in the Progressive Era show them as modest and feminine but also autonomous, intelligent, and capable. Using the historian Charles Ponce de Leon's research on modern human-interest journalism, I contend that first ladies in the Progressive Era worked with the modern press in a symbiotic relationship. This relationship allowed the press exclusive access to what was, ostensibly, the first lady's private, and therefore authentic, self. By purporting to reveal parts of their private lives in the press, first ladies showed themselves as down-to-earth despite their success and fulfilled by their domestic pursuits despite their compelling public lives. By offering the press exclusive access to their lives, first ladies secured the opportunity to shape specific images of themselves to appeal, as broadly as possible, to their husbands and parties' constituents and the American public. First ladies in the Progressive Era thus acted as political figures by using both public and private, or what historian Catherine Allgor terms, "unofficial spaces" to support and reflect their husbands and parties' political agendas. In examining representations of first ladies in popular magazines and newspapers from 1901 to 1921 in tandem with letters, memoirs, and other personal papers from these women, a clear pattern emerges. Despite personal differences, first ladies in the Progressive Era represented themselves according to a specific formula in the modern press. The images, constructed by first ladies in this time period, reflect shifts in economic, social, and political life in Progressive Era America, which called for women to be independent and intelligent yet still maintain their femininity and domesticity.
ContributorsHorohoe, Jill (Author) / Gullett, Gayle (Thesis advisor) / Longley, Rodney K (Committee member) / Warren-Findley, Jannelle (Committee member) / Arizona State University (Publisher)
Created2011
149649-Thumbnail Image.png
Description
This study examines the differences in demographic and life characteristics between transgender and female prostitutes in a prostitution diversion program and identifies specialized treatment and exiting strategies for transgender prostitutes. The purpose of this study was to develop a better understanding of the transgender experience in prostitution and to

This study examines the differences in demographic and life characteristics between transgender and female prostitutes in a prostitution diversion program and identifies specialized treatment and exiting strategies for transgender prostitutes. The purpose of this study was to develop a better understanding of the transgender experience in prostitution and to contribute to the descriptive literature. Participants were 465 individuals who were arrested for prostitution and attended a prostitution-focused diversion program. Differences found to be significant between transgender and female prostitutes included demographic characteristics, history of childhood sexual abuse, and experience of violence in prostitution. Implications for treatment, exiting strategies and future research are discussed.
ContributorsSchepel, Elizabeth (Author) / Roe-Sepowitz, Dominique (Thesis advisor) / Krysik, Judy (Committee member) / Androff, David (Committee member) / Arizona State University (Publisher)
Created2011
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011