Matching Items (1,763)
Filtering by

Clear all filters

150053-Thumbnail Image.png
Description
While the literature on caregivers of loved ones with Alzheimer's Disease and Related Disorders (ADRD) has continued to grow, the relationship of ethnicity and acculturation factors with regards to the coping strategies used by caregivers has not been extensively explored. The current study included participants from the Palo Alto site

While the literature on caregivers of loved ones with Alzheimer's Disease and Related Disorders (ADRD) has continued to grow, the relationship of ethnicity and acculturation factors with regards to the coping strategies used by caregivers has not been extensively explored. The current study included participants from the Palo Alto site of the Resources for Enhancing Alzheimer's Caregiver Health (REACH) project. The study examined differences in coping strategies between 140 non-Hispanic White, 45 less acculturated Latina, and 61 more acculturated Latina caregivers. Univariate and Multivariate Analysis of Variance, as well as post hoc analyses, were conducted to determine the differences among the three groups. Results indicated less acculturated Latina caregivers employ more avoidant coping strategies compared to non-Hispanic White caregivers. However, no differences were found among the other groups in their use of avoidance coping. Moreover, there were no differences found in the use of social support seeking, count your blessings, problem focused, and blaming others coping among the three groups. These findings have important implications for the design of culturally relevant psychoeducational and therapeutic interventions aimed towards meeting the individual needs of these three populations. In addition, the findings expand on the understanding of maladaptive coping strategies that may be potentially exacerbating caregiver distress among Latina caregivers.
ContributorsFelix, Vitae (Author) / Arciniega, Guillermo M (Thesis advisor) / Robinson-Kurpius, Sharon (Committee member) / Coon, David W. (Committee member) / Arizona State University (Publisher)
Created2011
150058-Thumbnail Image.png
Description
The current study explored whether intrinsically religious individuals are able to separate the "sin" from the "sinner" (i.e., separate category membership from behavior) when judging homosexual individuals, or whether they are instead subject to the negativity bias (judgments based solely on category membership) in moral judgments. All effects were expected

The current study explored whether intrinsically religious individuals are able to separate the "sin" from the "sinner" (i.e., separate category membership from behavior) when judging homosexual individuals, or whether they are instead subject to the negativity bias (judgments based solely on category membership) in moral judgments. All effects were expected to occur only for participants high in homophobia. Participants were 305 undergraduate male and female students at a large, public university in the southwestern U.S. Respondents read one of five scenarios that described gay or straight targets who were celibate or engaged in same or opposite sex relationships, then were asked to respond to a series of questions evaluating attitudes and behavioral intentions toward the target. Results revealed that homophobia led to a negativity bias in judgments of gay targets, which was intensified by intrinsic religiosity. However, individuals high on intrinsic religiosity and high on homophobia also differentiated between gay targets based on sexual behavior, such that gay targets who were celibate or in an opposite-sex relationship were rated more favorably than gay targets in a same-sex relationship. These findings demonstrate that the negativity bias and "sin vs. sinner" differentiation may both be occurring for intrinsically religious individuals. The moderating effect of homophobia on the interaction between intrinsic religiosity and judgments of gay and straight targets shows us that religiosity itself is not inherently tolerant or intolerant.
ContributorsFilip-Crawford, Gabrielle (Author) / Nagoshi, Craig T. (Thesis advisor) / Kwan, Virginia S.Y. (Committee member) / Neuberg, Steven L. (Committee member) / Arizona State University (Publisher)
Created2011
150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
149705-Thumbnail Image.png
Description
Family adaptation to child developmental disability is a dynamic transactional process that has yet to be tested in a longitudinal, rigorous fashion. In addition, although children with developmental delays frequently have behavior problems, not enough research has examined possible underlying mechanisms in the relation between child developmental delay, adaptation and

Family adaptation to child developmental disability is a dynamic transactional process that has yet to be tested in a longitudinal, rigorous fashion. In addition, although children with developmental delays frequently have behavior problems, not enough research has examined possible underlying mechanisms in the relation between child developmental delay, adaptation and behavior problems. In the current study, factor analysis examined how best to conceptualize the construct of family adaptation to developmental delay. Also, longitudinal growth curve modeling tested models in which child behavior problems mediated the relation between developmental risk and indices of family adaptation. Participants included 130 typically developing children and their families (Mental Development Index [MDI] > 85) and 104 children with developmental delays and their families (MDI < 85). Data were collected yearly between the ages of three and eight as part of a multi-site, longitudinal investigation examining the interrelations among children's developmental status, family processes, and the emergence of child psychopathology. Results of the current study indicated that adaptation is best conceptualized as a multi-index construct. Different aspects of adaptation changed in unique ways over time, with some facets of adaptation remaining stable while others fluctuated. Child internalizing and externalizing behavior problems were found to decrease over time for both children with developmental delays and typically developing children. Child behavior problems were also found to mediate the relation between developmental risk and family adaptation for over half of the mediation pathways. Significant mediation results indicated that children with developmental delays showed higher early levels of behavior problems, which in turn was associated with more maladaptive adaptation. These findings provide further evidence that families of children with developmental delays experience both positive and more challenging changes in their families over time. This study implies important next steps for research and clinical practice in the area of developmental disability.
ContributorsPedersen y Arbona, Anita (Author) / Crnic, Keith A (Thesis advisor) / Sandler, Irwin (Committee member) / Lemery, Kathryn (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2011
149707-Thumbnail Image.png
Description
Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.
ContributorsAnderson, Matthew Brandon (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Rege, Kaushal (Committee member) / Anderson, James (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
150023-Thumbnail Image.png
Description
An emerging body of literature suggests that humans likely have multiple threat avoidance systems that enable us to detect and avoid threats in our environment, such as disease threats and physical safety threats. These systems are presumed to be domain-specific, each handling one class of potential threats, and previous research

An emerging body of literature suggests that humans likely have multiple threat avoidance systems that enable us to detect and avoid threats in our environment, such as disease threats and physical safety threats. These systems are presumed to be domain-specific, each handling one class of potential threats, and previous research generally supports this assumption. Previous research has not, however, directly tested the domain-specificity of disease avoidance and self-protection by showing that activating one threat management system does not lead to responses consistent only with a different threat management system. Here, the domain- specificity of the disease avoidance and self-protection systems is directly tested using the lexical decision task, a measure of stereotype accessibility, and the implicit association test. Results, although inconclusive, more strongly support a series of domain-specific threat management systems than a single, domain- general system
ContributorsAnderson, Uriah Steven (Author) / Kenrick, Douglas T. (Thesis advisor) / Shiota, Michelle N. (Committee member) / Neuberg, Steven L. (Committee member) / Becker, David V (Committee member) / Arizona State University (Publisher)
Created2011
149995-Thumbnail Image.png
Description
A new arrangement of the Concerto for Two Horns in E-flat Major, Hob. VIId/6, attributed by some to Franz Joseph Haydn, is presented here. The arrangement reduces the orchestral portion to ten wind instruments, specifically a double wind quintet, to facilitate performance of the work. A full score and a

A new arrangement of the Concerto for Two Horns in E-flat Major, Hob. VIId/6, attributed by some to Franz Joseph Haydn, is presented here. The arrangement reduces the orchestral portion to ten wind instruments, specifically a double wind quintet, to facilitate performance of the work. A full score and a complete set of parts are included. In support of this new arrangement, a discussion of the early treatment of horns in pairs and the subsequent development of the double horn concerto in the eighteenth century provides historical context for the Concerto for Two Horns in E-flat major. A summary of the controversy concerning the identity of the composer of this concerto is followed by a description of the content and structure of each of its three movements. Some comments on the procedures of the arrangement complete the background information.
ContributorsYeh, Guan-Lin (Author) / Ericson, John (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Pilafian, J. Samuel (Committee member) / Arizona State University (Publisher)
Created2011
149997-Thumbnail Image.png
Description
This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower

This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development.
ContributorsKiefer, Brian Daniel (Author) / Heydt, Gerald T (Thesis advisor) / Shunk, Dan (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
150030-Thumbnail Image.png
Description
The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However,

The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However, relatively little is known about the ecological and physiological constraints that may influence the development and maintenance of sensory systems. In the house finch (Carpodacus mexicanus) and many other bird species, carotenoid pigments are used to create colorful sexually selected displays, and their expression is limited by health and dietary access to carotenoids. Carotenoids also accumulate in the avian retina, protecting it from photodamage and tuning color vision. Analogous to plumage carotenoid accumulation, I hypothesized that avian vision is subject to environmental and physiological constraints imposed by the acquisition and allocation of carotenoids. To test this hypothesis, I carried out a series of field and captive studies of the house finch to assess natural variation in and correlates of retinal carotenoid accumulation and to experimentally investigate the effects of dietary carotenoid availability, immune activation, and light exposure on retinal carotenoid accumulation. Moreover, through dietary manipulations of retinal carotenoid accumulation, I tested the impacts of carotenoid accumulation on visually mediated foraging and mate choice behaviors. My results indicate that avian retinal carotenoid accumulation is variable and significantly influenced by dietary carotenoid availability and immune system activity. Behavioral studies suggest that retinal carotenoid accumulation influences visual foraging performance and mediates a trade-off between color discrimination and photoreceptor sensitivity under dim-light conditions. Retinal accumulation did not influence female choice for male carotenoid-based coloration, indicating that a direct link between retinal accumulation and sexual selection for coloration is unlikely. However, retinal carotenoid accumulation in males was positively correlated with their plumage coloration. Thus, carotenoid-mediated visual health and performance or may be part of the information encoded in sexually selected coloration.
ContributorsToomey, Matthew (Author) / McGraw, Kevin J. (Thesis advisor) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Verrelli, Brian (Committee member) / Arizona State University (Publisher)
Created2011
150032-Thumbnail Image.png
Description
Molecular dynamics (MD) simulations provide a particularly useful approach to understanding conformational change in biomolecular systems. MD simulations provide an atomistic, physics-based description of the motions accessible to biomolecular systems on the pico- to micro-second timescale, yielding important insight into the free energy of the system, the dynamical stability of

Molecular dynamics (MD) simulations provide a particularly useful approach to understanding conformational change in biomolecular systems. MD simulations provide an atomistic, physics-based description of the motions accessible to biomolecular systems on the pico- to micro-second timescale, yielding important insight into the free energy of the system, the dynamical stability of contacts and the role of correlated motions in directing the motions of the system. In this thesis, I use molecular dynamics simulations to provide molecular mechanisms that rationalize structural, thermodynamic, and mutation data on the interactions between the lac repressor headpiece and its O1 operator DNA as well as the ERK2 protein kinase. I performed molecular dynamics simulations of the lac repressor headpiece - O1 operator complex at the natural angle as well as at under- and overbent angles to assess the factors that determine the natural DNA bending angle. I find both energetic and entropic factors contribute to recognition of the natural angle. At the natural angle the energy of the system is minimized by optimization of protein-DNA contacts and the entropy of the system is maximized by release of water from the protein-DNA interface and decorrelation of protein motions. To identify the mechanism by which mutations lead to auto-activation of ERK2, I performed a series of molecular dynamics simulations of ERK1/2 in various stages of activation as well as the constitutively active Q103A, I84A, L73P and R65S ERK2 mutants. My simulations indicate the importance of domain closure for auto-activation and activity regulation. My results enable me to predict two loss-of-function mutants of ERK2, G83A and Q64C, that have been confirmed in experiments by collaborators. One of the powerful capabilities of MD simulations in biochemistry is the ability to find low free energy pathways that connect and explain disparate structural data on biomolecular systems. An extention of the targeted molecular dynamics technique using constraints on internal coordinates will be presented and evaluated. The method gives good results for the alanine dipeptide, but breaks down when applied to study conformational changes in GroEL and adenylate kinase.
ContributorsBarr, Daniel Alan (Author) / van der Vaart, Arjan (Thesis advisor) / Matyushov, Dmitry (Committee member) / Wolf, George (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2011