Matching Items (18)
Filtering by

Clear all filters

157173-Thumbnail Image.png
Description
Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. This study expands the existing framework of numerical simulation for desert urbanization to include the computation of dust generation related to urban land-use changes. This is accomplished by connecting a suite of numerical models, including a meso-scale meteorological model, a land-surface model, an urban canopy model, and a turbulence model, to produce the key parameters that control the surface fluxes of wind-blown dust. Those models generate the near-surface turbulence intensity, soil moisture, and land-surface properties, which are used to determine the dust fluxes from a set of laboratory-based empirical formulas. This framework is applied to a series of simulations for the desert city of Erbil across a period of rapid urbanization. The changes in surface dust fluxes associated with urbanization are quantified. An analysis of the model output further reveals the dependence of surface dust fluxes on local meteorological conditions. Future applications of the models to environmental prediction are discussed.
ContributorsTahir, Sherzad Tahseen (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2019
Description
Desert ecosystems are one of the fastest urbanizing areas on the planet. This rapid shift has the potential to alter the abundances and species richness of herbivore and plant communities. Herbivores, for example, are expected to be more abundant in urban desert remnant parks located within cities due to anthropogenic

Desert ecosystems are one of the fastest urbanizing areas on the planet. This rapid shift has the potential to alter the abundances and species richness of herbivore and plant communities. Herbivores, for example, are expected to be more abundant in urban desert remnant parks located within cities due to anthropogenic activities that concentrate food resources and reduce native predator populations. Despite this assumption, previous research conducted around Phoenix has shown that top-down herbivory led to equally reduced plant biomass. It is unclear if this insignificant difference in herbivory at rural and urban sites is due to unaltered desert herbivore populations or altered activity levels that counteract abundance differences. Vertebrate herbivore populations were surveyed at four sites inside and four sites outside of the core of Phoenix during fall 2014 and spring 2015 in order to determine whether abundances and richness differ significantly between urban and rural sites. In order to survey species composition and abundance at these sites, 100 Sherman traps and 8 larger wire traps that are designed to attract and capture small vertebrates such as mice, rats, and squirrels, were set at each site for two consecutive trap nights. Results suggest that the commonly assumed effect of urbanization on herbivore abundances does not apply to small rodent herbivore populations in a desert city, as overall small rodent abundances were statistically similar regardless of location. Though a significant difference was not found for species richness, a significant difference between small rodent genera richness at these sites was observed.
ContributorsAlvarez Guevara, Jessica Noemi (Co-author) / Ball, Becky A. (Co-author, Thesis director) / Hall, Sharon J. (Co-author) / Bateman, Heather (Committee member) / School of Sustainability (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134327-Thumbnail Image.png
Description
The Mexican gray wolf (Canis lupus baileyi) is a genetically distinct subspecies of the gray wolf (Canis lupus) that was driven to the brink of extinction as a result of human persecution. The wolf is listed as Endangered under the Endangered Species Act, and a recovery program is underway in

The Mexican gray wolf (Canis lupus baileyi) is a genetically distinct subspecies of the gray wolf (Canis lupus) that was driven to the brink of extinction as a result of human persecution. The wolf is listed as Endangered under the Endangered Species Act, and a recovery program is underway in Arizona and New Mexico to restore its population. However, the wolf is struggling to recover due to high mortality, which is a result of continued human hostility toward it. This thesis examines historical and current human attitudes toward the wolf and the implications that they have had on the extermination and recovery of the subspecies. An overview is given of wolf biology, the history of wolf extermination and recovery, and recent events relating to the recovery of the wolf. Negative impacts on ranching, hunting, and human safety are the main reasons for opposition toward wolves and wolf recovery; these concerns are analyzed, and solutions to them are proposed, with the goal of addressing them while fostering non-lethal coexistence with the wolf. In addition, opposition to wolves and wolf recovery is tied in with larger socio-political issues and is influenced by the representation of the wolf in culture; these issues in the context of wolves are also analyzed.
ContributorsLenk, Heather Nicole (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Brown, David E. (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
137468-Thumbnail Image.png
Description
This thesis examines how the wording of proposed government policies can affect the level of public support that a given policy generates. By surveying 158 Phoenix residents, I tested the differing degrees of support that voters would have for a proposed city ordinance, which would stop Homeowners' Associations from restricting

This thesis examines how the wording of proposed government policies can affect the level of public support that a given policy generates. By surveying 158 Phoenix residents, I tested the differing degrees of support that voters would have for a proposed city ordinance, which would stop Homeowners' Associations from restricting the use of native desert plants in residential landscaping. The ordinance was framed in the survey as a self-governance issue or a water conservation issue. I found that the message frames had little effect on the overall level of support for the ordinance, since most residents had moderate support for the policy. However, participants who were either residents of Homeowners' Associations that did not have native plant restrictions, or native residents of Arizona, demonstrated greater levels of support for the self-determination frame of the proposed ordinance. These findings have implications for policy makers who use targeted messages to establish pro-environmental policies at the local level.
ContributorsSmith, Mary Hannah (Author) / Darnall, Nicole (Thesis director) / Ramirez, Mark (Committee member) / Tetreault, Colin (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor)
Created2013-05
134587-Thumbnail Image.png
Description
Chytridiomycosis, an infectious disease caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), has played a significant role in global amphibian declines. Researchers studying Bd aim to gain a better understanding of how this pathogen survives in unique microhabitats to promote persistence of amphibians in their natural habitat. The Arizona

Chytridiomycosis, an infectious disease caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), has played a significant role in global amphibian declines. Researchers studying Bd aim to gain a better understanding of how this pathogen survives in unique microhabitats to promote persistence of amphibians in their natural habitat. The Arizona Game and Fish Department has worked for the last 12 years to recover populations of Chiricahua Leopard Frogs to ensure the species survives in the Huachuca Mountains in southeastern Arizona. During this time, the department tested for Bd throughout their release sites. As a result of large differences in prevalence noted in prior sampling for Bd in Miller and Ramsey canyons, I investigated abiotic factors that could explain these differences. I analyzed water samples from two canyons in the Huachuca Mountains and used nutrient analysis and filter extraction to test for differences in abiotic factors between these two sites that could affect Bd transmission. Results show that Ramsey Canyon was a positive site for Bd, while Miller Canyon remained negative. Results from water temperature estimates as well as a test for 30 elements revealed possible reasons for differences in Bd transmission between the two canyons.
ContributorsSmith, Paige Gabrielle (Author) / Collins, James P. (Thesis director) / Franklin, Janet (Committee member) / Sredl, Michael J. (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The objective of the research was to simulate interdependencies between municipal water-power distribution systems in a theoretical section of the Phoenix urban environment that had variable population density and highest ambient temperature. Real-time simulations were run using the Resilient Infrastructure Simulation Environment (RISE) software developed by Laboratory for Energy and

The objective of the research was to simulate interdependencies between municipal water-power distribution systems in a theoretical section of the Phoenix urban environment that had variable population density and highest ambient temperature. Real-time simulations were run using the Resilient Infrastructure Simulation Environment (RISE) software developed by Laboratory for Energy and Power Solutions (LEAPS) at ASU. The simulations were run at estimated population density to simulate urbanism, and temperature conditions to simulate increased urban heat island effect of Phoenix at 2020, 2040, 2060, and 2080 using the IEEE 13 bus test case were developed. The water model was simulated by extrapolated projections of increased population from the city of Phoenix census data. The goal of the simulations was that they could be used to observe the critical combination of system factors that lead to cascading failures and overloads across the interconnected system. Furthermore, a Resilient Infrastructure Simulation Environment (RISE) user manual was developed and contains an introduction to RISE and how it works, 2 chapters detailing the components of power and water systems, respectively, and a final section describing the RISE GUI as a user. The user manual allows prospective users, such as utility operators or other stakeholders, to familiarize themselves with both systems and explore consequences of altering system properties in RISE by themselves. Parts of the RISE User Manual were used in the online "help" guide on the RISE webpage.
ContributorsSchadel, Suzanne (Author) / Johnson, Nathan (Thesis director) / Hamel, Derek (Committee member) / School of International Letters and Cultures (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
American youth are not well exposed to animal- and nature-related careers. This is especially important to consider due to the recent push to be more environmentally conscious. In addition, youth are spending less time outside and more time in front of screens. This is driving down biophilia strength. The combination

American youth are not well exposed to animal- and nature-related careers. This is especially important to consider due to the recent push to be more environmentally conscious. In addition, youth are spending less time outside and more time in front of screens. This is driving down biophilia strength. The combination of a weaker connection with nature and more screen time has been connected to a new condition named Nature-Deficit Disorder. In order to expose youth to animal- and nature-related careers while attempting to combat the growing presence of Nature-Deficit Disorder, a three day teaching program named Wild Careers was created. This program was presented to teens in December 2015 through a partnership with the education department of Arizona Animal Welfare League. The curriculum was centered on highlighting relevant careers and background information. Topics such as animal welfare and conservation were taught as cornerstones during the program due to their encompassing importance to the career fields in question. It was felt to be important to inform participants about the context of these fields through specially planned activities and guest speakers. Participants were challenged to conduct online research, think critically, and get hands-on during this program. Wild Careers also exposed the participants to animals and the relevant species management stories. The surveys given before and after the presentation of the created curriculum provided evidence that supported an increased understanding of careers and enjoyment of participants. I propose that other non-formal teaching environments should be created that target exposing youth to animals, nature, and related careers.
ContributorsTaubel, Samantha Kay (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Arthur, Emilie (Committee member) / Division of Teacher Preparation (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148108-Thumbnail Image.png
Description

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile species survival in the valley. Research shows that animals in the classroom have led to improved academic success for students. Thus, through creating this course I was able to combine conservation and sustainability curriculum with real-life animals whose survival is directly being affected in the valley. My hope is that this course will help students identify a newfound passion and call to action to protect native wildlife. The more awareness and actionable knowledge which can be brought to students in Arizona about challenges to species survival the more likely we are to see a change in the future and a stronger sense of urgency for protecting wildlife. In order to accomplish these goals, the curriculum was developed to begin with basic concepts of species needs such as food and shelter and basic principles of sustainability. As the course progresses the students analyze current challenges reptile wildlife faces, like urban sprawl, and explore options to address these challenges. The course concludes with a pilot pitch where students present their solution projects to the school.

ContributorsGoethe, Emma Rae (Author) / Brundiers, Katja (Thesis director) / Bouges, Olivia (Committee member) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141375-Thumbnail Image.png
Description

Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic

Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic heat sources are the main causes of UHI. The two heat sources increase the temperatures of an urban area as compared to its surroundings, which is known as Urban Heat Island Intensity (UHII). The problem is even worse in cities or metropolises with large population and extensive economic activities. The estimated three billion people living in the urban areas in the world are directly exposed to the problem, which will be increased significantly in the near future. Due to the severity of the problem, vast research effort has been dedicated and a wide range of literature is available for the subject. The literature available in this area includes the latest research approaches, concepts, methodologies, latest investigation tools and mitigation measures. This study was carried out to review and summarize this research area through an investigation of the most important feature of UHI. It was concluded that the heat re-radiated by the urban structures plays the most important role which should be investigated in details to study urban heating especially the UHI. It was also concluded that the future research should be focused on design and planning parameters for reducing the effects of urban heat island and ultimately living in a better environment.

ContributorsRizwan, Ahmed Memon (Author) / Dennis, Leung Y.C. (Author) / Liu, Chunho (Author)
Created2007-09-27
166186-Thumbnail Image.png
Description

In 1996, a floral and faunal inventory of the southeastern slopes of the Marojejy Massif, which falls in a protected area known as the Parc national de Marojejy, was conducted in an ascending series of altitudinal transect zones. The 1996 research team worked in five altitudinal zones (referred to as

In 1996, a floral and faunal inventory of the southeastern slopes of the Marojejy Massif, which falls in a protected area known as the Parc national de Marojejy, was conducted in an ascending series of altitudinal transect zones. The 1996 research team worked in five altitudinal zones (referred to as transect zones). Between 3 October and 15 November 2021, a floral and faunal inventory was completed, replicating the locations surveyed in 1996 and closely the dates. Detected bird species were analyzed for changes in elevational distribution between 1996 and 2021. Birds were divided into three feeding behavior groups and tolerance to forest habitat degradation was considered.

ContributorsLangrand, Tahiry (Author) / Schoon, Michael (Thesis director) / Goodman, Steve (Committee member) / Barrett, The Honors College (Contributor) / School of Complex Adaptive Systems (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor)
Created2022-05