Matching Items (2)
Filtering by

Clear all filters

150171-Thumbnail Image.png
Description
Haiti has witnessed high deforestation rates in recent decades, caused largely by the fuel needs of a growing population. The resulting soil loss is estimated to have contributed towards a decline in agricultural productivity of 0.5% -1.2% per year since 1997. Recent studies show the potential of biochar use through

Haiti has witnessed high deforestation rates in recent decades, caused largely by the fuel needs of a growing population. The resulting soil loss is estimated to have contributed towards a decline in agricultural productivity of 0.5% -1.2% per year since 1997. Recent studies show the potential of biochar use through pyrolysis technology to increase crop yields and improve soil health. However, the appropriateness of this technology in the context of Haiti remains unexplored. The three objectives of this research were to identify agricultural- and fuel-use-related needs and gaps in rural Haitian communities; determine the appropriateness of biochar pyrolyzer technology, used to convert agricultural biomass into a carbon-rich charcoal; and develop an action-oriented plan for use by development organizations, communities, and governmental institutions to increase the likelihood of adoption. Data were collected using participatory rural appraisal techniques involving 30 individual interviews and three focus-group discussions in the villages of Cinquantin and La Boule in the La Coupe region of central Haiti. Topics discussed include agricultural practices and assets, fuel use and needs, technology use and adoption, and social management practices. The Sustainable Livelihoods framework was used to examine the assets of households and the livelihood strategies being employed. Individual and focus group interviews were analyzed to identify specific needs and gaps. E.M. Rogers' Diffusion of Innovations theory was used to develop potential strategies for the introduction of pyrolysis technology. Preliminary results indicate biochar pyrolysis has potential to address agricultural and fuel needs in rural Haiti. Probable early adopters of biochar technology include households that have adopted new agricultural techniques in the past, and those with livestock. Education about biochar, and a variety of pyrolysis technology options from which villagers may select, are important factors in successful adoption of biochar use. A grain mill as an example in one of the study villages provides a model of ownership and use of pyrolysis technology that may increase its likelihood of successful adoption. Additionally, women represent a group that may be well suited to control a new local biochar enterprise, potentially benefiting the community.
ContributorsDelaney, Michael Ryan (Author) / Aggarwal, Rimjhim (Thesis advisor) / Chhetri, Nalini (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2011
132449-Thumbnail Image.png
Description
In Nepal, a viable solution for environmental management, food and water security is the production of biochar, a carbon material made of plants burned in low oxygen conditions. Currently, the biochar is manufactured into charcoal briquettes and sold on the market for energy usage, however this may not provide the

In Nepal, a viable solution for environmental management, food and water security is the production of biochar, a carbon material made of plants burned in low oxygen conditions. Currently, the biochar is manufactured into charcoal briquettes and sold on the market for energy usage, however this may not provide the best value for community members who make less than a dollar a day and sell the biochar for as little as 16 cents per kilogram. This thesis seeks to improve the price of biochar and help their livelihoods as well as explore innovative solutions. One way to improve biochar while addressing water security problems is to create activated carbon, which uses its heightened porosity to adsorb contaminants from water or air. Activated carbon is also worth 100x the price of biochar. This thesis evaluates the mass content of biochar produced in Nepal, comparing it to literature values, and performed gravimetric and thermogravimetric analysis, comparing it to Activated Charcoal. Analysis of the biochar system used in Nepal reveals that the byproduct of biochar, biofuels, is highly underutilized. The higher heating value of biochar is 17.95 MJ/kg, which is much lower than other charcoals which burn around 30 MJ/kg. Low volatile content, less than 5% in biochar, provides a smokeless briquette, which is favorable on the market, however low heating value and misutilizations of biofuels in the solution indicate that creating a briquette is not the best use for biochar. Ash content is really high in this biochar, averaging around 12% and it may be due to the feedstock, a composite between Mikania and Lantana, which have 5.23% and 10.77% ash content respectively. This does not necessarily indicate a poor quality biochar, since ash values can vary widely between charcoals. Producing activated charcoal from this biochar is a favored solution; it will increase the price of the biochar, provide water security solutions, and be an appropriate process for this biochar, where heating value and underutilization of biofuel byproducts pose a problem.
ContributorsCayer, Joelle Marie Caroline (Author) / Chhetri, Netra (Thesis director) / Henderson, Mark (Committee member) / Deng, Shuguang (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05