Matching Items (13)
Filtering by

Clear all filters

133420-Thumbnail Image.png
Description
The purpose of this thesis research project is to explore blockchain technology and its present and future applications within supply chain management. Emerging blockchain technologies, both public and private, are already showing great promise for a number of applications in and outside supply chain management. Our sole focus is to

The purpose of this thesis research project is to explore blockchain technology and its present and future applications within supply chain management. Emerging blockchain technologies, both public and private, are already showing great promise for a number of applications in and outside supply chain management. Our sole focus is to understand the fundamentals of blockchain, smart contracts, current applications in supply chain, and the future possibilities for blockchain to shape global supply chains. Many have theorized about how private blockchains can be implemented and used; however, there is little research to date that has collected and explored the actual use cases in industry today. The mission of this research paper is to separate theory from the current state of the technology and provide a clearer understanding of where the technology is headed in the near future. We aim to produce a work that will provide a comprehensive description and commentary on current use cases for the education of students and industry professionals alike. With any new technological developments, terminology and technicalities can be paralyzing, and this is particularly true for blockchain technology. For this project, our goal was to create a document that cuts through the complexities and allows a non-technical audience to gain a strong foundational understanding of blockchain's potential and current limitations within supply chains. Provided this, some highly technical concepts and implementation details will not be explored due to the complexity and minimal understanding even amongst industry experts. As future supply chain professionals, we are motivated to further our understanding of blockchain technologies and the potential for this technology to shape the future of supply chain management.
ContributorsBecker, Logan (Co-author) / Falco, Alexander (Co-author) / Murphy, Thomas Brian (Co-author) / Taylor, Todd (Thesis director) / Wiedmer, Robert (Committee member) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148445-Thumbnail Image.png
Description

This is a test plan document for Team Aegis' capstone project that has the goal of mitigating single event upsets in NAND flash memory caused by space radiation.

ContributorsForman, Oliver Ethan (Co-author) / Smith, Aiden (Co-author) / Salls, Demetra (Co-author) / Kozicki, Michael (Thesis director) / Hodge, Chris (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
156040-Thumbnail Image.png
Description
Smart cities are the next wave of rapid expansion of Internet of Things (IoT). A smart city is a designation given to a city that incorporates information and communication technologies (ICT) to enhance the quality and performance of urban services, such as energy, transportation, healthcare, communications, entertainments, education, e-commerce, businesses,

Smart cities are the next wave of rapid expansion of Internet of Things (IoT). A smart city is a designation given to a city that incorporates information and communication technologies (ICT) to enhance the quality and performance of urban services, such as energy, transportation, healthcare, communications, entertainments, education, e-commerce, businesses, city management, and utilities, to reduce resource consumption, wastage and overall costs. The overarching aim of a smart city is to enhance the quality of living for its residents and businesses, through technology. In a large ecosystem, like a smart city, many organizations and companies collaborate with the smart city government to improve the smart city. These entities may need to store and share critical data with each other. A smart city has several thousands of smart devices and sensors deployed across the city. Storing critical data in a secure and scalable manner is an important issue in a smart city. While current cloud-based services, like Splunk and ELK (Elasticsearch-Logstash-Kibana), offer a centralized view and control over the IT operations of these smart devices, it is still prone to insider attacks, data tampering, and rogue administrator problems. In this thesis, we present an approach using blockchain to recovering critical data from unauthorized modifications. We use extensive simulations based on complex adaptive system theory, for evaluation of our approach. Through mathematical proof we proved that the approach always detects an unauthorized modification of critical data.
ContributorsMishra, Vineeta (Author) / Yau, Sik-Sang (Thesis advisor) / Goul, Michael K (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2017
161862-Thumbnail Image.png
Description
The purpose of an election is for the voice of the voters to be heard. All the participants in an election must be able to trust that the result of an election is actually the opinion of the people, unaltered by anything or anyone that may be trying to sway

The purpose of an election is for the voice of the voters to be heard. All the participants in an election must be able to trust that the result of an election is actually the opinion of the people, unaltered by anything or anyone that may be trying to sway the vote. In the voting process, any "black boxes" or secrets can lead to mistrust in the system. In this thesis, an approach is developed for an electronic voting framework that is transparent, auditable, and scalable, making it trustworthy and usable for a wide-scale election. Based on my analysis, linkable ring signatures are utilized in order to preserve voter privacy while ensuring that a corrupt authenticating authority could not sway the vote. A hierarchical blockchain framework is presented to make ring signatures a viable signature scheme even when working with large populations. The solution is evaluated for compliance with secure voting requirements and scalability.
ContributorsMarple, Sam (Author) / Yau, Sik-Sang (Thesis advisor) / Huang, Dijiang (Committee member) / Trieu, Ni (Committee member) / Arizona State University (Publisher)
Created2021
157577-Thumbnail Image.png
Description
Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the limited resources it can employ in various application scenarios, including computing power, network resource, dedicated hardware, etc. The situation is further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT applications, such as delay, bandwidth, security, reliability, and more. This mismatch in resources and demands has greatly hindered the deployment and utilization of IoT services in many resource-intense and QoS-sensitive scenarios like autonomous driving and virtual reality.

I believe that the resource issue in IoT will persist in the near future due to technological, economic and environmental factors. In this dissertation, I seek to address this issue by means of smart resource allocation. I propose mathematical models to formally describe various resource constraints and application scenarios in IoT. Based on these, I design smart resource allocation algorithms and protocols to maximize the system performance in face of resource restrictions. Different aspects are tackled, including networking, security, and economics of the entire IoT ecosystem. For different problems, different algorithmic solutions are devised, including optimal algorithms, provable approximation algorithms, and distributed protocols. The solutions are validated with rigorous theoretical analysis and/or extensive simulation experiments.
ContributorsYu, Ruozhou, Ph.D (Author) / Xue, Guoliang (Thesis advisor) / Huang, Dijiang (Committee member) / Sen, Arunabha (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2019
158005-Thumbnail Image.png
Description
The traditional access control system suffers from the problem of separation of data ownership and management. It poses data security issues in application scenarios such as cloud computing and blockchain where the data owners either do not trust the data storage provider or even do not know who would have

The traditional access control system suffers from the problem of separation of data ownership and management. It poses data security issues in application scenarios such as cloud computing and blockchain where the data owners either do not trust the data storage provider or even do not know who would have access to their data once they are appended to the chain. In these scenarios, the data owner actually loses control of the data once they are uploaded to the outside storage. Encryption-before-uploading is the way to solve this issue, however traditional encryption schemes such as AES, RSA, ECC, bring about great overheads in key management on the data owner end and could not provide fine-grained access control as well.

Attribute-Based Encryption (ABE) is a cryptographic way to implement attribute-based access control, which is a fine-grained access control model, thus solving all aforementioned issues. With ABE, the data owner would encrypt the data by a self-defined access control policy before uploading the data. The access control policy is an AND-OR boolean formula over attributes. Only users with attributes that satisfy the access control policy could decrypt the ciphertext. However the existing ABE schemes do not provide some important features in practical applications, e.g., user revocation and attribute expiration. Furthermore, most existing work focus on how to use ABE to protect cloud stored data, while not the blockchain applications.

The main objective of this thesis is to provide solutions to add two important features of the ABE schemes, i.e., user revocation and attribute expiration, and also provide a practical trust framework for using ABE to protect blockchain data. To add the feature of user revocation, I propose to add user's hierarchical identity into the private attribute key. In this way, only users whose identity is not revoked and attributes satisfy the access control policy could decrypt the ciphertext. To add the feature of attribute expiration, I propose to add the attribute valid time period into the private attribute key. The data would be encrypted by access control policy where all attributes have a temporal value. In this way, only users whose attributes both satisfy the access policy and at the same time these attributes do not expire,

are allowed to decrypt the ciphertext. To use ABE in the blockchain applications, I propose an ABE-enabled trust framework in a very popular blockchain platform, Hyperledger Fabric. Based on the design, I implement a light-weight attribute certificate authority for attribute distribution and validation; I implement the proposed ABE schemes and provide a toolkit which supports system setup, key generation,

data encryption and data decryption. All these modules were integrated into a demo system for protecting sensitive les in a blockchain application.
ContributorsDong, Qiuxiang (Author) / Huang, Dijiang (Thesis advisor) / Sen, Arunabha (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2020
132247-Thumbnail Image.png
Description
The purpose of this thesis is to imagine and predict the ways in which humans will utilize technology to feed the world population in the 21st century, in spite of significant challenges we have not faced before. This project will first thoroughly identify and explain the most pressing challenges the

The purpose of this thesis is to imagine and predict the ways in which humans will utilize technology to feed the world population in the 21st century, in spite of significant challenges we have not faced before. This project will first thoroughly identify and explain the most pressing challenges the future will bring in climate change and population growth; both projected to worsen as time goes on. To guide the prediction of how technology will impact the 21st century, a theoretical framework will be established, based upon the green revolution of the 20th century. The theoretical framework will summarize this important historical event, and analyze current thought concerning the socio-economic impacts of the agricultural technologies introduced during this time. Special attention will be paid to the unequal disbursement of benefits of this green revolution, and particularly how it affected small rural farmers. Analysis of the technologies introduced during the green revolution will be used to predict how 21st century technologies will further shape the agricultural sector. Then, the world’s current food crisis will be compared to the crisis that preceded the green revolution. A “second green revolution” is predicted, and the agricultural/economic impact of these advances is theorized based upon analysis of farming advances in the 20th century.
ContributorsWilson, Joshua J (Author) / Strumsky, Deborah (Thesis director) / Benjamin, Victor (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131600-Thumbnail Image.png
Description
This study aims to examine how the use of consensus-based transactions, smart contracts,and interoperability, provided by blockchain, may benefit the blood plasma industry. Plasmafractionation is the process of separating blood into multiple components to garner benefitsof increased lifespan, specialized allocation, and decreased waste, thereby creating a morecomplex and flexible supply

This study aims to examine how the use of consensus-based transactions, smart contracts,and interoperability, provided by blockchain, may benefit the blood plasma industry. Plasmafractionation is the process of separating blood into multiple components to garner benefitsof increased lifespan, specialized allocation, and decreased waste, thereby creating a morecomplex and flexible supply chain. Traditional applications of blockchain are developed onthe basis of decentralization—an infeasible policy for this sector due to stringent governmentregulations, such as HIPAA. However, the trusted nature of the relations in the plasmaindustry’s taxonomy proves private and centralized blockchains as the viable alternative.Implementations of blockchain are widely seen across pharmaceutical supply chains to combatthe falsification of possibly afflictive drugs. This system is more difficult to manage withblood, due to the quick perishable time, tracking/tracing of recycled components, and thenecessity of real-time metrics. Key attributes of private blockchains, such as digital identity,smart contracts, and authorized ledgers, may have the possibility of providing a significantpositive impact on the allocation and management functions of blood banks. Herein, we willidentify the economy and risks of the plasma ecosystem to extrapolate specific applications forthe use of blockchain technology. To understand tangible effects of blockchain, we developeda proof of concept application, aiming to emulate the business logic of modern plasma supplychain ecosystems adopting a blockchain data structure. The application testing simulates thesupply chain via agent-based modeling to analyze the scalability, benefits, and limitations ofblockchain for the plasma fractionation industry.
ContributorsVallabhaneni, Saipavan K (Author) / Boscovic, Dragan (Thesis director) / Kellso, James (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131446-Thumbnail Image.png
Description
Blockchain technology has the potential to be an effective form of identity management and human trafficking prevention as an identity solution. The topic of this thesis originates from the United Nation’s Sustainable Development Goal to create a form of identity for every individual on the plant by the year 2030.

Blockchain technology has the potential to be an effective form of identity management and human trafficking prevention as an identity solution. The topic of this thesis originates from the United Nation’s Sustainable Development Goal to create a form of identity for every individual on the plant by the year 2030. This research analyzed and compared primarily global databases with information on human trafficking populations and unidentified populations to understand both issues, and the intersections of their populations. This is followed by a discussion of Blockchain technology’s attributes and a Blockchain identities potential characteristic. This research concludes that a Blockchain based identity can be used to mitigate human trafficking by creating various forms of identity for affected populations. Four basic factors of Blockchain technology can be utilized through public and private partnerships to address different parts of the AMP model for the cycle of human trafficking. The conclusion that Blockchain is a potential solution to the analyzed issues comes with caution and alongside an examination of the risk factors involved in implementing this technology and the future investigation necessary to test this conclusion. Risk factors with using blockchain technology as a solution are examined to help direct future research on the topic. The conclusion is based off Blockchain’s ability to address specific problems in human trafficking and the global identity crisis (GIC) that were found in the analysis.
ContributorsMcnamara, Mary Patricia (Author) / Wiedmer, Robert (Thesis director) / Calvin, Samantha (Committee member) / Department of Supply Chain Management (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132736-Thumbnail Image.png
Description
The purpose of this research paper is to examine the fundamentals of blockchain technology and how the application of blockchain could serve as a future platform for identity. An identity is used, as the name suggests, to identify who or what an entity is. Although seen as a trivial concept,

The purpose of this research paper is to examine the fundamentals of blockchain technology and how the application of blockchain could serve as a future platform for identity. An identity is used, as the name suggests, to identify who or what an entity is. Although seen as a trivial concept, defining what truly makes up an identity can become quite difficult. Is an identity the thoughts, feelings, or tendencies of a person? Are more tangible assets like a Social Security card, birth certificate, or passport a person’s identity? Can nonhuman entities like businesses or organizations possess an identity? The true definition of an identity may never be known; however, it is certain that several pieces of identifying data lay scattered across multiple databases. Often a person may not have control or even access to these third-party databases that hold their information. Moreover, what information, for how long, and in what way the data is being used may be unclear. Blockchain provides a solution to the identity problem by providing a visible, secure single source of truth. On a blockchain platform, a person would no longer have to trust the goodwill of third parties to secure their data or be uncertain about how the data is being used. Instead, a user could secure their own data and only permission those deemed necessary. The signal immutable ledger would serve to replace current tangible identities as a means to verify yourself in a digital age.
ContributorsRuggaard, Kyle Russell (Author) / Taylor, Todd (Thesis director) / Collins, Gregory (Committee member) / Thunderbird School of Global Management (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05