Matching Items (3)
Filtering by

Clear all filters

131060-Thumbnail Image.png
Description
All modern multiplayer games are administered by having players connect to a remote server which is used to provide the ground truth for game state and player actions. This use of a central server provides a simple and intuitive way to administer game servers but also provides a single point

All modern multiplayer games are administered by having players connect to a remote server which is used to provide the ground truth for game state and player actions. This use of a central server provides a simple and intuitive way to administer game servers but also provides a single point of failure, as each server must be able to process all actions coming in and make a decision on whether the action is allowed or not, and how to update the game state accordingly. In cases where the server is under significant load, either from a very popular game release or from a deliberate attack, the game slows down or completely crashes. When there is a server action backlog, this can allow malicious actors to perform previously impossible actions. By instead using a decentralized platform, we can build a robust system that allows playing games through a P2P manner, filling in the need for central servers with consensus algorithms that provide the security on the part of a central authority. This project aims to show that a decentralized solution can be used to create a transparent, fully playable game of Monopoly with complex features that would be more scalable, reliable, and cost-effective compared to a centralized solution; meaning that games could be produced that costs pennies to publish and modify, taking seconds to propagate changes globally, and most importantly, cost nothing for upkeep. The codebase is available here: https://github.com/SirNeural/monopoly
ContributorsXu, Yun Hui (Author) / Boscovic, Dragan (Thesis director) / Foy, Joseph (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
166212-Thumbnail Image.png
Description

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from the world we see. Finally, we explore the capability of the human eye to detect light in its quantum state, closing the gap between us and quantum physics.

ContributorsAndersen, Liam (Author) / Bujan, Reynaldo R. (Co-author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
165921-Thumbnail Image.png
Description

Wave-particle duality is concerned with the dual nature of light. Specifically, the particle and wave nature of light. The particle nature of light is the little packages of photons that make up light, and the wave nature of light is the wave pattern that light follows. An example of a

Wave-particle duality is concerned with the dual nature of light. Specifically, the particle and wave nature of light. The particle nature of light is the little packages of photons that make up light, and the wave nature of light is the wave pattern that light follows. An example of a way that light behaves like a particle is that it can’t go through walls like sound can. Light also can behave like a wave when we observe the interference pattern of light. This dual nature of light is important because nothing else known in the universe behaves and can be described in the way that light is. Getting to the consensus that light is both a particle and a wave has been a heated debate for decades, and to this day imagining what light truly is, is not humanly possible due to our lack of experience with a wave-particle nature. This thesis explores the history of the debates on the nature of light, and how the modern view was accomplished.

ContributorsHuseinovic, Elma (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05