Matching Items (2)
Filtering by

Clear all filters

153442-Thumbnail Image.png
Description
It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are

It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are classified into six groups as: 1) local density, 2) diversity of land use, 3) road connectivity, 4) bike route length, 5) green space, 6) job accessibility. Cycling trips in one week for all children, school children, adults and employed-adults are investigated separately. The regression analysis shows that cycling trips is significantly associated with some features of built environment when many socio-demographic factors are taken into account. Street intersections, bike route length tend to increase the use of bicycle. These effects are well-aligned with literature. Moreover, both local and regional job accessibility variables are statistically significant in two adults' models. However, residential density always has a significant negatively effect on cycling trips, which is still need further research to confirm. Also, there is a gap in literature on how green space affects cycling, but the results of this study is still too unclear to make it up. By elasticity analysis, this study concludes that street intersections is the most powerful predictor on cycling trips. From another perspective, the effects of built environment on cycling at workplace (or school) are distinguished from at home. This study implies that a wide range of measures are available for planners to control vehicle travel by improving cycling-level in California.
ContributorsWang, Kailai, M.U.E.P (Author) / Salon, Deborah (Thesis advisor) / Rey, Sergio (Committee member) / Li, Wenwen (Committee member) / Arizona State University (Publisher)
Created2015
161787-Thumbnail Image.png
Description
The role of movement data is essential to understanding how geographic context influences movement patterns in urban areas. Owing to the growth in ubiquitous data collection platforms like smartphones, fitness trackers, and health monitoring apps, researchers are now able to collect movement data at increasingly fine spatial and temporal resolution.

The role of movement data is essential to understanding how geographic context influences movement patterns in urban areas. Owing to the growth in ubiquitous data collection platforms like smartphones, fitness trackers, and health monitoring apps, researchers are now able to collect movement data at increasingly fine spatial and temporal resolution. Despite the surge in volumes of fine-grained movement data, there is a gap in the availability of quantitative and analytical tools to extract actionable insights from such big datasets and tease out the role of context in movement pattern analysis. As cities aim to be safer and healthier, policymakers require methods to generate efficient strategies for urban planning utilizing high-frequency movement data to make targeted decisions for infrastructure investments without compromising the safety of its residents. The objective of this Ph.D. dissertation is to develop quantitative methods that combine big spatial-temporal data from crowdsourced platforms with geographic context to analyze movement patterns over space and time. Knowledge about the role of context can help in assessing why changes in movement patterns occur and how those changes are affected by the immediate natural and built environment. In this dissertation I contribute to the rapidly expanding body of quantitative movement pattern analysis research by 1) developing a bias-correction framework for improving the representativeness of crowdsourced movement data by modeling bias with training data and geographical variables, 2) understanding spatial-temporal changes in movement patterns at different periods and how context influences those changes by generating hourly and monthly change maps in bicycle ridership patterns, and 3) quantifying the variation in accuracy and generalizability of transportation mode detection models using GPS (Global Positioning Systems) data upon adding geographic context. Using statistical models, supervised classification algorithms, and functional data analysis approaches I develop modeling frameworks that address each of the research objectives. The results are presented as street-level maps and predictive models which are reproducible in nature. The methods developed in this dissertation can serve as analytical tools by policymakers to plan infrastructure changes and facilitate data collection efforts that represent movement patterns for all ages and abilities.
ContributorsRoy, Avipsa (Author) / Nelson, Trisalyn A. (Thesis advisor) / Kedron, Peter J. (Committee member) / Li, Wenwen (Committee member) / Arizona State University (Publisher)
Created2021