Matching Items (11)
Filtering by

Clear all filters

172014-Thumbnail Image.png
Description
A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from

A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from the cooling/heating system, air exchange associated with exfiltration and relief air, and heat transfer between the building envelope and surroundings. Several recent studies show that the building envelope generates more heat release into the environment than any other building component.Current advancements in material science have enabled the development of materials and coatings with very high solar reflectance and thermal emissivity, and that can alter their radiative properties based on surface temperature. This dissertation is an effort to quantify the impact of recent developments in such technologies on urban air. The current study addresses three specific unresolved topics: 1) the relative importance of rooftop solar reflectance and thermal emissivity, 2) the role of rooftop radiative properties in different climates, and 3) the impact of temperature-adaptive exterior materials/coatings on building energy savings and urban cooling. The findings from this study show that the use of rooftop materials with solar reflectance above 0.9 maintain the surface temperature below ambient air temperature most of the time, even when the materials have conventional thermal emissivity (0.9). This research has demonstrated that for hot cities, rooftops with high solar reflectance and thermal emittance maximize building energy savings and always cool the surrounding air. For moderate climate regions, high solar reflectance and low thermal emittance result in the greatest building energy cost savings. This combination of radiative properties cools the air during the daytime and warms it at night. Finally, this research found that temperature-adaptive materials could play a significant role in reducing utility costs for poorly insulated buildings, but that they heat the surrounding air in the winter, irrespective of the rooftop insulation. Through the detailed analysis of building façade radiative properties, this dissertation offers climate-specific design guidance that can be used to simultaneously optimize energy costs while minimizing adverse warming of the surrounding environment.
ContributorsPrem Anand Jayaprabha, Jyothis Anand (Author) / Sailor, David (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Yeom, Dongwoo Jason (Committee member) / Arizona State University (Publisher)
Created2022
171612-Thumbnail Image.png
Description
Public transportation is considered a solution to congestion and a tool for reducing greenhouse gas emissions. It is becoming popular even in cities with the harshest climate conditions as these cities grow rapidly and are trying to provide sustainable alternatives for their vehicle-oriented communities. A lot must be taken into

Public transportation is considered a solution to congestion and a tool for reducing greenhouse gas emissions. It is becoming popular even in cities with the harshest climate conditions as these cities grow rapidly and are trying to provide sustainable alternatives for their vehicle-oriented communities. A lot must be taken into consideration whendesigning transit systems to reduce riders' vulnerability to heat in cities with high temperatures averaging 40°C during the summer and humidity levels reaching 90 percent. Using transit systems in Dubai, United Arab Emirates, and Phoenix Metropolitan, United States, as case studies, this paper focuses on both qualitative and quantitative research methods to observe the built environment around public transit stations and measure the temperatures and humidity levels to compare with the experienced temperatures and the built environment observations. The results show that the design of transit stations and the public realm significantly impacts a rider's experience. The findings show that passive cooling, shading, and vegetation as the best practices in the two case studies. Both transit systems have certain elements that work efficiently and other elements that need improvement to provide a better rider experience. Identifying these best practices helps develop recommendations for the future of designing transit systems in desert cities worldwide.
ContributorsAlbastaki, Mohamed (Author) / King, David (Thesis advisor) / Salon, Deborah (Committee member) / Kelley, Jason (Committee member) / Arizona State University (Publisher)
Created2022
168313-Thumbnail Image.png
Description
The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality

The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality for urban dwellers. Prior studies have identified the role of urban green spaces in the relief of urban heat stress. Yet little effort was devoted to quantify their contribution to local and regional CO2 budget. In fact, urban biogenic CO2 fluxes from photosynthesis and respiration are influenced by the microclimate in the built environment and are sensitive to anthropogenic disturbance. The high complexity of the urban ecosystem leads to an outstanding challenge for numerical urban models to disentangling and quantifying the interplay between heat and carbon dynamics.This dissertation aims to advance the simulation of thermal and carbon dynamics in urban land surface models, and to investigate the role of urban greening practices and urban system design in mitigating heat and CO2 emissions. The biogenic CO2 exchange in cities is parameterized by incorporating plant physiological functions into an advanced single-layer urban canopy model in the built environment. The simulation result replicates the microclimate and CO2 flux patterns measured from an eddy covariance system over a residential neighborhood in Phoenix, Arizona with satisfactory accuracy. Moreover, the model decomposes the total CO2 flux from observation and identifies the significant CO2 efflux from soil respiration. The model is then applied to quantify the impact of urban greening practices on heat and biogenic CO2 exchange over designed scenarios. The result shows the use of urban greenery is effective in mitigating both urban heat and carbon emissions, providing environmental co-benefit in cities. Furthermore, to seek the optimal urban system design in terms of thermal comfort and CO2 reduction, a multi-objective optimization algorithm is applied to the machine learning surrogates of the physical urban land surface model. There are manifest trade-offs among ameliorating diverse urban environmental indicators despite the co-benefit from urban greening. The findings of this dissertation, along with its implications on urban planning and landscaping management, would promote sustainable urban development strategies for achieving optimal environmental quality for policy makers, urban residents, and practitioners.
ContributorsLi, Peiyuan (Author) / Wang, Zhihua (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Myint, Soe (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2021
168769-Thumbnail Image.png
Description
Transit agencies are struggling to regain ridership lost during the pandemic. Research shows that riding transit was among the most feared activities during the pandemic due to people’s high perceived risk of infection. Transit agencies have responded by implementing a variety of pandemic-related safety measures in stations and vehicles, but

Transit agencies are struggling to regain ridership lost during the pandemic. Research shows that riding transit was among the most feared activities during the pandemic due to people’s high perceived risk of infection. Transit agencies have responded by implementing a variety of pandemic-related safety measures in stations and vehicles, but there is little literature assessing how these safety measures affect passengers’ perception of safety. This study implements surveys, interviews, and observations in Berlin, Germany to assess how passengers’ demographic characteristics and experiences with safety measures are related to their perception of safety using transit. Females and older age groups were more likely to perceive transit as riskier than males and younger age groups. The results provide little evidence to suggest that safety measures have a significant impact on passengers’ perception of safety, however. If this result is supported by future research, it suggests that transit agency investments in pandemic safety measures may not help them to regain ridership.
ContributorsKatt, Noah (Author) / Salon, Deborah (Thesis advisor) / Meerow, Sara (Committee member) / King, David (Committee member) / Arizona State University (Publisher)
Created2022
168811-Thumbnail Image.png
Description
The Phoenix area is often considered the mecca of suburban residential sprawl and for as long as the city has been growing, retail development has followed. Despite occurring alongside residential sprawl, retail development does not have the same characteristics as residential suburban sprawl and has more closely followed national retail

The Phoenix area is often considered the mecca of suburban residential sprawl and for as long as the city has been growing, retail development has followed. Despite occurring alongside residential sprawl, retail development does not have the same characteristics as residential suburban sprawl and has more closely followed national retail trends. Regardless, there are still some differences, therefore the research question that will be asked here is how have the characteristics of retail development in Greater Phoenix followed the national trends of retail developments that were established in each decade since the 1950s? Characteristics were gathered from a literature review and 29 sample retail developments from various types of retail formats popularized in the various decades including commercial strips, regional shopping centers, big box centers, factory outlet malls, power centers, power parks, and lifestyle centers were surveyed. Overall, it was found that many retail developments in Phoenix are larger than the national standard. Additionally, retail formats like power parks, power towns, and big box centers included more small and medium sized inline or strip storefronts than the national standard. But, in general, many characteristics other than those already mentioned did not vary much from the national norms. In the end, retail development will continue to be important as the Phoenix area continues to grow into one of the biggest metros in the country.
ContributorsGallegos, Jairus Donald (Author) / King, David (Thesis advisor) / Davis, Jonathan (Committee member) / Ó Huallacháin, Breandán (Committee member) / Arizona State University (Publisher)
Created2022
157173-Thumbnail Image.png
Description
Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. This study expands the existing framework of numerical simulation for desert urbanization to include the computation of dust generation related to urban land-use changes. This is accomplished by connecting a suite of numerical models, including a meso-scale meteorological model, a land-surface model, an urban canopy model, and a turbulence model, to produce the key parameters that control the surface fluxes of wind-blown dust. Those models generate the near-surface turbulence intensity, soil moisture, and land-surface properties, which are used to determine the dust fluxes from a set of laboratory-based empirical formulas. This framework is applied to a series of simulations for the desert city of Erbil across a period of rapid urbanization. The changes in surface dust fluxes associated with urbanization are quantified. An analysis of the model output further reveals the dependence of surface dust fluxes on local meteorological conditions. Future applications of the models to environmental prediction are discussed.
ContributorsTahir, Sherzad Tahseen (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2019
154025-Thumbnail Image.png
Description
This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For

This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For each city, the land-use maps of 1985 and 2010 from Landsat satellite observation, and a projected land-use map for 2030, are used to represent the past, present, and future. An additional set of simulations for Las Vegas, the largest of the five cities, uses the NLCD 1992 and 2006 land-use maps and an idealized historical land-use map with no urban coverage for 1900.

The study finds that urbanization in Las Vegas produces a classic urban heat island (UHI) at night but a minor cooling during the day. A further analysis of the surface energy balance shows that the decrease in surface Albedo and increase effective emissivity play an important role in shaping the local climate change over urban areas. The emerging urban structures slow down the diurnal wind circulation over the city due to an increased effective surface roughness. This leads to a secondary modification of temperature due to the interaction between the mechanical and thermodynamic effects of urbanization.

The simulations for the five desert cities for 1985 and 2010 further confirm a common pattern of the climatic effect of urbanization with significant nighttime warming and moderate daytime cooling. This effect is confined to the urban area and is not sensitive to the size of the city or the detail of land cover in the surrounding areas. The pattern of nighttime warming and daytime cooling remains robust in the simulations for the future climate of the five cities using the projected 2030 land-use maps. Inter-city differences among the five urban areas are discussed.
ContributorsKamal, Samy (Author) / Huang, Huei-Ping (Thesis advisor) / Anderson, James (Thesis advisor) / Herrmann, Marcus (Committee member) / Calhoun, Ronald (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2015
155098-Thumbnail Image.png
Description
The combination of rapid urban growth and climate change places stringent constraints on multisector sustainability of cities. Green infrastructure provides a great potential for mitigating anthropogenic-induced urban environmental problems; nevertheless, studies at city and regional scales are inhibited by the deficiency in modelling the complex transport coupled water and energy

The combination of rapid urban growth and climate change places stringent constraints on multisector sustainability of cities. Green infrastructure provides a great potential for mitigating anthropogenic-induced urban environmental problems; nevertheless, studies at city and regional scales are inhibited by the deficiency in modelling the complex transport coupled water and energy inside urban canopies. This dissertation is devoted to incorporating hydrological processes and urban green infrastructure into an integrated atmosphere-urban modelling system, with the goal to improve the reliability and predictability of existing numerical tools. Based on the enhanced numerical tool, the effects of urban green infrastructure on environmental sustainability of cities are examined.

Findings indicate that the deployment of green roofs will cool the urban environment in daytime and warm it at night, via evapotranspiration and soil insulation. At the annual scale, green roofs are effective in decreasing building energy demands for both summer cooling and winter heating. For cities in arid and semiarid environments, an optimal trade-off between water and energy resources can be achieved via innovative design of smart urban irrigation schemes, enabled by meticulous analysis of the water-energy nexus. Using water-saving plants alleviates water shortage induced by population growth, but comes at the price of an exacerbated urban thermal environment. Realizing the potential water buffering capacity of urban green infrastructure is crucial for the long-term water sustainability and subsequently multisector sustainability of cities. Environmental performance of urban green infrastructure is determined by land-atmosphere interactions, geographic and meteorological conditions, and hence it is recommended that analysis should be conducted on a city-by-city basis before actual implementation of green infrastructure.
ContributorsYang, Jiachuan (Author) / Wang, Zhihua (Thesis advisor) / Kaloush, Kamil (Committee member) / Myint, Soe (Committee member) / Huang, Huei-Ping (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2016
156095-Thumbnail Image.png
Description
Informal public transport is commonplace in the developing world, but the service exists in the United States as well, and is understudied. Often called "dollar vans", New York's commuter vans serve approximately 120,000 people every day (King and Goldwyn, 2014). While this is a tiny fraction of the New York

Informal public transport is commonplace in the developing world, but the service exists in the United States as well, and is understudied. Often called "dollar vans", New York's commuter vans serve approximately 120,000 people every day (King and Goldwyn, 2014). While this is a tiny fraction of the New York transit rider population, it is comparable to the total number of commuters who ride transit in smaller cities such as Minneapolis/St Paul and Phoenix. The first part of this study reports on the use of commuter vans in Eastern Queens based on a combination of surveys and a ridership tally, all conducted in summer 2016. It answers four research questions: How many people ride the vans? Who rides the commuter vans? Why do they ride commuter vans? Do commuter vans complement or compete against formal transit? Commuter van ridership in Eastern Queens was approximately 55,000 with a high percentage of female ridership. Time and cost savings were the main factors influencing commuter van ridership. Possession of a MetroCard was shown to negatively affect the frequency of commuter van ridership. The results show evidence of commuter vans playing both a competing and complementary role to MTA bus and subway transit. The second part of this study presents a SWOT analysis results of commuter vans, and the policy implications. It answers 2 research questions: What are the main strengths, weaknesses, opportunities and threats of commuter vans in Eastern Queens? and How do the current policies, rules and regulations affect commuter van operation? The SWOT analysis results show that the commuter van industry is resilient, performs a necessary service, and, with small adjustments that will help reduce operating costs and loss of profits have a chance of thriving in Eastern Queens and the rest of New York City. The study also discusses the mismatch between policy and practice offering recommendations for improvement to ensure that commuter vans continue to serve residents of New York City.
ContributorsMusili, Catherine (Author) / Salon, Deborah (Thesis advisor) / King, David (Committee member) / Kelley, Jason (Committee member) / Arizona State University (Publisher)
Created2017
157822-Thumbnail Image.png
Description
The world has been continuously urbanized and is currently accommodating more than half of the human population. Despite that cities cover only less than 3% of the Earth’s land surface area, they emerged as hotspots of anthropogenic activities. The drastic land use changes, complex three-dimensional urban terrain, and anthropogenic heat

The world has been continuously urbanized and is currently accommodating more than half of the human population. Despite that cities cover only less than 3% of the Earth’s land surface area, they emerged as hotspots of anthropogenic activities. The drastic land use changes, complex three-dimensional urban terrain, and anthropogenic heat emissions alter the transport of mass, heat, and momentum, especially within the urban canopy layer. As a result, cities are confronting numerous environmental challenges such as exacerbated heat stress, frequent air pollution episodes, degraded water quality, increased energy consumption and water use, etc. Green infrastructure, in particular, the use of trees, has been proved as an effective means to improve urban environmental quality in existing research. However, quantitative evaluations of the efficacy of urban trees in regulating air quality and thermal environment are impeded by the limited temporal and spatial scales in field measurements and the deficiency in numerical models.

This dissertation aims to advance the simulation of realistic functions of urban trees in both microscale and mesoscale numerical models, and to systematically evaluate the cooling capacity of urban trees under thermal extremes. A coupled large-eddy simulation–Lagrangian stochastic modeling framework is developed for the complex urban environment and is used to evaluate the impact of urban trees on traffic-emitted pollutants. Results show that the model is robust for capturing the dispersion of urban air pollutants and how strategically implemented urban trees can reduce vehicle-emitted pollution. To evaluate the impact of urban trees on the thermal environment, the radiative shading effect of trees are incorporated into the integrated Weather Research and Forecasting model. The mesoscale model is used to simulate shade trees over the contiguous United States, suggesting how the efficacy of urban trees depends on geographical and climatic conditions. The cooling capacity of urban trees and its response to thermal extremes are then quantified for major metropolitans in the United States based on remotely sensed data. It is found the nonlinear temperature dependence of the cooling capacity remarkably resembles the thermodynamic liquid-water–vapor equilibrium. The findings in this dissertation are informative to evaluating and implementing urban trees, and green infrastructure in large, as an important urban planning strategy to cope with emergent global environmental changes.
ContributorsWang, Chenghao (Author) / Wang, Zhihua (Thesis advisor) / Myint, Soe W. (Committee member) / Huang, Huei-Ping (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2019