Matching Items (3)
Filtering by

Clear all filters

136517-Thumbnail Image.png
Description
Adopting smart city tactics is important because it allows cities to develop sustainable communities through efficient policy initiatives. This study exemplifies how data analytics enables planners within smart cities to gain a better understanding of their population, and can make more informed choices based on these consumer choices. As a

Adopting smart city tactics is important because it allows cities to develop sustainable communities through efficient policy initiatives. This study exemplifies how data analytics enables planners within smart cities to gain a better understanding of their population, and can make more informed choices based on these consumer choices. As a rising share of the millennial generation enters the workforce, cities across the world are developing policy initiatives in the hopes of attracting these highly educated individuals. Due to this generation's strength in driving regional economic vitality directly and indirectly, it is in the best interests of city planners to understand the preferences of millennials so this information can be used to improve the attractiveness of communities for this high-purchasing power, productive segment of the population. Past research has revealed a tendency within this demographic to make location decisions based on the degree of ‘livability’ in an area. This degree represents a holistic approach at defining quality of life through the interconnectedness of both the built and social environments in cities.

Due to the importance of millennials to cities around the globe, this study uses 2010 ZIP code area data and the Phoenix metropolitan area as a case study to test the relationships between thirteen parameters of livability and the presence of millennials after controlling for other correlates of millennial preference.

The results of a multiple regression model indicated a positive linear association between livability parameters within smart cities and the presence of millennials. Therefore, the selected parameters of livability within smart cities are significant measures in influencing location decisions made by millennials. Urban planners can consequently increase the likelihood in which millennials will choose to live in a given area by improving livability across the parameters exemplified in this study. This mutually beneficial relationship provides added support to the notion that planners should develop solutions to improve livability within smart cities.
Created2015-05
137740-Thumbnail Image.png
Description
In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS) methods. One strategy involved   weighted mean center and

In order to help enhance admissions and recruiting efforts, this longitudinal study analyzed the geographic distribution of matriculated Barrett freshmen from 2007-2012 and sought to explore hot and cold spot locations of Barrett enrollment numbers using geographic information science (GIS) methods. One strategy involved   weighted mean center and standard distance analyses for each year of data for non-resident (out-of-state) freshmen home zip codes. Another strategy, a Poisson regression model, revealed recruitment "hot and cold spots" across the U.S. to project the expected counts of Barrett freshmen by zip code. This projected count served as a comparison for the actual admissions data, where zip codes with over and under predictions represented cold and hot spots, respectively. The mean center analysis revealed a westward shift from 2007 to 2012 with similar distance dispersions. The Poisson model projected zero-student zip codes with 99.2% accuracy and non-zero zip codes with 73.8% accuracy. Norwalk, CA (90650) and New York, NY (10021) represented the top out-of-state cold spot zip codes, while the model indicated that Chandler, AZ (85249) and Queen Creek, AZ (85242) had the most in-state potential for recruitment. The model indicated that more students have come from Albuquerque, NM (87122) and Aurora, CO (80015) than anticipated, while Phoenix, AZ (85048) and Tempe, AZ (85284) represent in-state locations with higher correlations between the variables included, especially regarding distance decay, and the than expected numbers of freshmen. The regression also indicated the existence of strong likelihood of attracting Barrett students.
ContributorsKostanick, Megan Elizabeth (Author) / Rey, Sergio (Thesis director) / Dorn, Ron (Committee member) / Koschinsky, Julia (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Politics and Global Studies (Contributor)
Created2013-05
151767-Thumbnail Image.png
Description
Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic strengthening and the intensification of baroclinic disturbances. Galactic Cosmic ray

Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic strengthening and the intensification of baroclinic disturbances. Galactic Cosmic ray induced tropospheric ionization modifies cloud microphysics, and modulates the global electric circuit. This dissertation is constructed around three research questions: (1): What are the biweekly declination effects of lunar gravitation upon the troposphere? (2): How do United States severe weather reports correlate with heliospheric current sheet crossings? and (3): How does cloud cover spatially and temporally vary with galactic cosmic rays? Study 1 findings show spatial consistency concerning lunar declination extremes upon Rossby longwaves. Due to the influence of Rossby longwaves on synoptic scale circulation, our results could theoretically extend numerical meteorological forecasting. Study 2 results indicate a preference for violent tornadoes to occur prior to a HCS crossing. Violent tornadoes (EF3+) are 10% more probable to occur near, and 4% less probable immediately after a HCS crossing. The distribution of hail and damaging wind reports do not mirror this pattern. Polarity is critical for the effect. Study 3 results confirm anticorrelation between solar flux and low-level marine-layer cloud cover, but indicate substantial regional variability between cloud cover altitude and GCRs. Ultimately, this dissertation serves to extend short term meteorological forecasting, enhance climatological modeling and through analysis of severe violent weather and heliospheric events, protect property and save lives.
ContributorsKrahenbuhl, Dan (Author) / Cerveny, Randall S. (Thesis advisor) / Dorn, Ron (Committee member) / Shaffer, John (Committee member) / Arizona State University (Publisher)
Created2013