Matching Items (10)
Filtering by

Clear all filters

151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151532-Thumbnail Image.png
Description
Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the

Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the supply of purge air as this decreases the net power output as well as efficiency of the gas turbine. Since the purge air influences the disk cavity flow field and effectively the amount of ingestion, the aim of this work was to study the cavity velocity field experimentally using Particle Image Velocimetry (PIV). Experiments were carried out in a model single-stage axial flow turbine set-up that featured blades as well as vanes, with purge air supplied at the hub of the rotor-stator disk cavity. Along with the rotor and stator rim seals, an inner labyrinth seal was provided which split the disk cavity into a rim cavity and an inner cavity. First, static gage pressure distribution was measured to ensure that nominally steady flow conditions had been achieved. The PIV experiments were then performed to map the velocity field on the radial-tangential plane within the rim cavity at four axial locations. Instantaneous velocity maps obtained by PIV were analyzed sector-by-sector to understand the rim cavity flow field. It was observed that the tangential velocity dominated the cavity flow at low purge air flow rate, its dominance decreasing with increase in the purge air flow rate. Radially inboard of the rim cavity, negative radial velocity near the stator surface and positive radial velocity near the rotor surface indicated the presence of a recirculation region in the cavity whose radial extent increased with increase in the purge air flow rate. Qualitative flow streamline patterns are plotted within the rim cavity for different experimental conditions by combining the PIV map information with ingestion measurements within the cavity as reported in Thiagarajan (2013).
ContributorsPathak, Parag (Author) / Roy, Ramendra P (Thesis advisor) / Calhoun, Ronald (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2013
151002-Thumbnail Image.png
Description
This study considered the impact of grid resolution on wind velocity simulated by the Weather Research and Forecasting (WRF) model. The period simulated spanned November 2009 through January 2010, for which, multi-resolution nested domains were examined. Basic analysis was performed utilizing the data assimilation tools of NCEP/NCAR (National Center for

This study considered the impact of grid resolution on wind velocity simulated by the Weather Research and Forecasting (WRF) model. The period simulated spanned November 2009 through January 2010, for which, multi-resolution nested domains were examined. Basic analysis was performed utilizing the data assimilation tools of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research) to determine the ideal location to examine during the simulation was the Pacific Northwest portion of the United States, specifically the border between California and Oregon. The simulated mutli-resolution nested domains in this region indicated an increase in apparent wind speed as the resolution for the domain was increased. These findings were confirmed by statistical analysis which identified a positive bias for wind speed with respect to increased resolution as well as a correlation coefficient indicating the existence of a positive change in wind speed with increased resolution. An analysis of temperature change was performed in order to test the validity of the findings of the WRF simulation model. The statistical analysis performed on temperature change throughout the increased grid resolution did not indicate any change in temperature. In fact the correlation coefficient values between the domains were found in the 0.90 range, indicating the non-sensitivity of temperature across the increased resolutions. These results validate the findings of the WRF simulation: increased wind velocity can be observed at higher grid resolution. The study then considered the difference between wind velocity observed over the entire domains and the wind velocity observed solely over offshore locations. Wind velocity was observed to be significantly higher (an increase of 68.4%) in the offshore locations. The findings of this study suggest simulation tools should be utilized to examine domains at a higher resolution in order to identify potential locations for wind farms. The results go further to suggest the ideal location for these potential wind farms will be at offshore locations.
ContributorsBouey, Michael (Author) / Huang, Huei-Ping (Thesis advisor) / Trimble, Steve (Committee member) / Ronald, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
151212-Thumbnail Image.png
Description
This study performs numerical modeling for the climate of semi-arid regions by running a high-resolution atmospheric model constrained by large-scale climatic boundary conditions, a practice commonly called climate downscaling. These investigations focus especially on precipitation and temperature, quantities that are critical to life in semi-arid regions. Using the Weather Research

This study performs numerical modeling for the climate of semi-arid regions by running a high-resolution atmospheric model constrained by large-scale climatic boundary conditions, a practice commonly called climate downscaling. These investigations focus especially on precipitation and temperature, quantities that are critical to life in semi-arid regions. Using the Weather Research and Forecast (WRF) model, a non-hydrostatic geophysical fluid dynamical model with a full suite of physical parameterization, a series of numerical sensitivity experiments are conducted to test how the intensity and spatial/temporal distribution of precipitation change with grid resolution, time step size, the resolution of lower boundary topography and surface characteristics. Two regions, Arizona in U.S. and Aral Sea region in Central Asia, are chosen as the test-beds for the numerical experiments: The former for its complex terrain and the latter for the dramatic man-made changes in its lower boundary conditions (the shrinkage of Aral Sea). Sensitivity tests show that the parameterization schemes for rainfall are not resolution-independent, thus a refinement of resolution is no guarantee of a better result. But, simulations (at all resolutions) do capture the inter-annual variability of rainfall over Arizona. Nevertheless, temperature is simulated more accurately with refinement in resolution. Results show that both seasonal mean rainfall and frequency of extreme rainfall events increase with resolution. For Aral Sea, sensitivity tests indicate that while the shrinkage of Aral Sea has a dramatic impact on the precipitation over the confine of (former) Aral Sea itself, its effect on the precipitation over greater Central Asia is not necessarily greater than the inter-annual variability induced by the lateral boundary conditions in the model and large scale warming in the region. The numerical simulations in the study are cross validated with observations to address the realism of the regional climate model. The findings of this sensitivity study are useful for water resource management in semi-arid regions. Such high spatio-temporal resolution gridded-data can be used as an input for hydrological models for regions such as Arizona with complex terrain and sparse observations. Results from simulations of Aral Sea region are expected to contribute to ecosystems management for Central Asia.
ContributorsSharma, Ashish (Author) / Huang, Huei-Ping (Thesis advisor) / Adrian, Ronald (Committee member) / Herrmann, Marcus (Committee member) / Phelan, Patrick E. (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2012
172014-Thumbnail Image.png
Description
A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from

A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from the cooling/heating system, air exchange associated with exfiltration and relief air, and heat transfer between the building envelope and surroundings. Several recent studies show that the building envelope generates more heat release into the environment than any other building component.Current advancements in material science have enabled the development of materials and coatings with very high solar reflectance and thermal emissivity, and that can alter their radiative properties based on surface temperature. This dissertation is an effort to quantify the impact of recent developments in such technologies on urban air. The current study addresses three specific unresolved topics: 1) the relative importance of rooftop solar reflectance and thermal emissivity, 2) the role of rooftop radiative properties in different climates, and 3) the impact of temperature-adaptive exterior materials/coatings on building energy savings and urban cooling. The findings from this study show that the use of rooftop materials with solar reflectance above 0.9 maintain the surface temperature below ambient air temperature most of the time, even when the materials have conventional thermal emissivity (0.9). This research has demonstrated that for hot cities, rooftops with high solar reflectance and thermal emittance maximize building energy savings and always cool the surrounding air. For moderate climate regions, high solar reflectance and low thermal emittance result in the greatest building energy cost savings. This combination of radiative properties cools the air during the daytime and warms it at night. Finally, this research found that temperature-adaptive materials could play a significant role in reducing utility costs for poorly insulated buildings, but that they heat the surrounding air in the winter, irrespective of the rooftop insulation. Through the detailed analysis of building façade radiative properties, this dissertation offers climate-specific design guidance that can be used to simultaneously optimize energy costs while minimizing adverse warming of the surrounding environment.
ContributorsPrem Anand Jayaprabha, Jyothis Anand (Author) / Sailor, David (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Yeom, Dongwoo Jason (Committee member) / Arizona State University (Publisher)
Created2022
168313-Thumbnail Image.png
Description
The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality

The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality for urban dwellers. Prior studies have identified the role of urban green spaces in the relief of urban heat stress. Yet little effort was devoted to quantify their contribution to local and regional CO2 budget. In fact, urban biogenic CO2 fluxes from photosynthesis and respiration are influenced by the microclimate in the built environment and are sensitive to anthropogenic disturbance. The high complexity of the urban ecosystem leads to an outstanding challenge for numerical urban models to disentangling and quantifying the interplay between heat and carbon dynamics.This dissertation aims to advance the simulation of thermal and carbon dynamics in urban land surface models, and to investigate the role of urban greening practices and urban system design in mitigating heat and CO2 emissions. The biogenic CO2 exchange in cities is parameterized by incorporating plant physiological functions into an advanced single-layer urban canopy model in the built environment. The simulation result replicates the microclimate and CO2 flux patterns measured from an eddy covariance system over a residential neighborhood in Phoenix, Arizona with satisfactory accuracy. Moreover, the model decomposes the total CO2 flux from observation and identifies the significant CO2 efflux from soil respiration. The model is then applied to quantify the impact of urban greening practices on heat and biogenic CO2 exchange over designed scenarios. The result shows the use of urban greenery is effective in mitigating both urban heat and carbon emissions, providing environmental co-benefit in cities. Furthermore, to seek the optimal urban system design in terms of thermal comfort and CO2 reduction, a multi-objective optimization algorithm is applied to the machine learning surrogates of the physical urban land surface model. There are manifest trade-offs among ameliorating diverse urban environmental indicators despite the co-benefit from urban greening. The findings of this dissertation, along with its implications on urban planning and landscaping management, would promote sustainable urban development strategies for achieving optimal environmental quality for policy makers, urban residents, and practitioners.
ContributorsLi, Peiyuan (Author) / Wang, Zhihua (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Myint, Soe (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2021
154266-Thumbnail Image.png
Description
The subject of this thesis is concerned with the amount of cooling air assigned to seal high pressure turbine rim cavities which is critical for performance as well as component life. Insufficient air leads to excessive hot annulus gas ingestion and its penetration deep into the cavity compromising disc life.

The subject of this thesis is concerned with the amount of cooling air assigned to seal high pressure turbine rim cavities which is critical for performance as well as component life. Insufficient air leads to excessive hot annulus gas ingestion and its penetration deep into the cavity compromising disc life. Excessive purge air, adversely affects performance. Experiments on a rotating turbine stage rig which included a rotor-stator forward disc cavity were performed at Arizona State University. The turbine rig has 22 vanes and 28 blades, while the rim cavity is composed of a single-tooth rim lab seal and a rim platform overlap seal. Time-averaged static pressures were measured in the gas path and the cavity, while mainstream gas ingestion into the cavity was determined by measuring the concentration distribution of tracer gas (carbon dioxide). Additionally, particle image velocimetry (PIV) was used to measure fluid velocity inside the rim cavity between the lab seal and the overlap. The data from the experiments were compared to an 360-degree unsteady RANS (URANS) CFD simulations. Although not able to match the time-averaged test data satisfactorily, the CFD simulations brought to light the unsteadiness present in the flow during the experiment which the slower response data did not fully capture. To interrogate the validity of URANS simulations in capturing complex rotating flow physics, the scope of this work also included to validating the CFD tool by comparing its predictions against experimental LDV data in a closed rotor-stator cavity. The enclosed cavity has a stationary shroud, a rotating hub, and mass flow does not enter or exit the system. A full 360 degree numerical simulation was performed comparing Fluent LES, with URANS turbulence models. Results from these investigations point to URANS state of art under-predicting closed cavity tangential velocity by 32% to 43%, and open rim cavity effectiveness by 50% compared to test data. The goal of this thesis is to assess the validity of URANS turbulence models in more complex rotating flows, compare accuracy with LES simulations, suggest CFD settings to better simulate turbine stage mainstream/disc cavity interaction with ingestion, and recommend experimentation techniques.
ContributorsKanjiyani, Shezan (Author) / Lee, Taewoo (Thesis advisor) / Mirzamoghadam, Alexander (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2016
155098-Thumbnail Image.png
Description
The combination of rapid urban growth and climate change places stringent constraints on multisector sustainability of cities. Green infrastructure provides a great potential for mitigating anthropogenic-induced urban environmental problems; nevertheless, studies at city and regional scales are inhibited by the deficiency in modelling the complex transport coupled water and energy

The combination of rapid urban growth and climate change places stringent constraints on multisector sustainability of cities. Green infrastructure provides a great potential for mitigating anthropogenic-induced urban environmental problems; nevertheless, studies at city and regional scales are inhibited by the deficiency in modelling the complex transport coupled water and energy inside urban canopies. This dissertation is devoted to incorporating hydrological processes and urban green infrastructure into an integrated atmosphere-urban modelling system, with the goal to improve the reliability and predictability of existing numerical tools. Based on the enhanced numerical tool, the effects of urban green infrastructure on environmental sustainability of cities are examined.

Findings indicate that the deployment of green roofs will cool the urban environment in daytime and warm it at night, via evapotranspiration and soil insulation. At the annual scale, green roofs are effective in decreasing building energy demands for both summer cooling and winter heating. For cities in arid and semiarid environments, an optimal trade-off between water and energy resources can be achieved via innovative design of smart urban irrigation schemes, enabled by meticulous analysis of the water-energy nexus. Using water-saving plants alleviates water shortage induced by population growth, but comes at the price of an exacerbated urban thermal environment. Realizing the potential water buffering capacity of urban green infrastructure is crucial for the long-term water sustainability and subsequently multisector sustainability of cities. Environmental performance of urban green infrastructure is determined by land-atmosphere interactions, geographic and meteorological conditions, and hence it is recommended that analysis should be conducted on a city-by-city basis before actual implementation of green infrastructure.
ContributorsYang, Jiachuan (Author) / Wang, Zhihua (Thesis advisor) / Kaloush, Kamil (Committee member) / Myint, Soe (Committee member) / Huang, Huei-Ping (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2016
152502-Thumbnail Image.png
Description
Climate change has been one of the major issues of global economic and social concerns in the past decade. To quantitatively predict global climate change, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations have organized a multi-national effort to use global atmosphere-ocean models to project anthropogenically induced

Climate change has been one of the major issues of global economic and social concerns in the past decade. To quantitatively predict global climate change, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations have organized a multi-national effort to use global atmosphere-ocean models to project anthropogenically induced climate changes in the 21st century. The computer simulations performed with those models and archived by the Coupled Model Intercomparison Project - Phase 5 (CMIP5) form the most comprehensive quantitative basis for the prediction of global environmental changes on decadal-to-centennial time scales. While the CMIP5 archives have been widely used for policy making, the inherent biases in the models have not been systematically examined. The main objective of this study is to validate the CMIP5 simulations of the 20th century climate with observations to quantify the biases and uncertainties in state-of-the-art climate models. Specifically, this work focuses on three major features in the atmosphere: the jet streams over the North Pacific and Atlantic Oceans and the low level jet (LLJ) stream over central North America which affects the weather in the United States, and the near-surface wind field over North America which is relevant to energy applications. The errors in the model simulations of those features are systematically quantified and the uncertainties in future predictions are assessed for stakeholders to use in climate applications. Additional atmospheric model simulations are performed to determine the sources of the errors in climate models. The results reject a popular idea that the errors in the sea surface temperature due to an inaccurate ocean circulation contributes to the errors in major atmospheric jet streams.
ContributorsKulkarni, Sujay (Author) / Huang, Huei-Ping (Thesis advisor) / Calhoun, Ronald (Committee member) / Peet, Yulia (Committee member) / Arizona State University (Publisher)
Created2014
157822-Thumbnail Image.png
Description
The world has been continuously urbanized and is currently accommodating more than half of the human population. Despite that cities cover only less than 3% of the Earth’s land surface area, they emerged as hotspots of anthropogenic activities. The drastic land use changes, complex three-dimensional urban terrain, and anthropogenic heat

The world has been continuously urbanized and is currently accommodating more than half of the human population. Despite that cities cover only less than 3% of the Earth’s land surface area, they emerged as hotspots of anthropogenic activities. The drastic land use changes, complex three-dimensional urban terrain, and anthropogenic heat emissions alter the transport of mass, heat, and momentum, especially within the urban canopy layer. As a result, cities are confronting numerous environmental challenges such as exacerbated heat stress, frequent air pollution episodes, degraded water quality, increased energy consumption and water use, etc. Green infrastructure, in particular, the use of trees, has been proved as an effective means to improve urban environmental quality in existing research. However, quantitative evaluations of the efficacy of urban trees in regulating air quality and thermal environment are impeded by the limited temporal and spatial scales in field measurements and the deficiency in numerical models.

This dissertation aims to advance the simulation of realistic functions of urban trees in both microscale and mesoscale numerical models, and to systematically evaluate the cooling capacity of urban trees under thermal extremes. A coupled large-eddy simulation–Lagrangian stochastic modeling framework is developed for the complex urban environment and is used to evaluate the impact of urban trees on traffic-emitted pollutants. Results show that the model is robust for capturing the dispersion of urban air pollutants and how strategically implemented urban trees can reduce vehicle-emitted pollution. To evaluate the impact of urban trees on the thermal environment, the radiative shading effect of trees are incorporated into the integrated Weather Research and Forecasting model. The mesoscale model is used to simulate shade trees over the contiguous United States, suggesting how the efficacy of urban trees depends on geographical and climatic conditions. The cooling capacity of urban trees and its response to thermal extremes are then quantified for major metropolitans in the United States based on remotely sensed data. It is found the nonlinear temperature dependence of the cooling capacity remarkably resembles the thermodynamic liquid-water–vapor equilibrium. The findings in this dissertation are informative to evaluating and implementing urban trees, and green infrastructure in large, as an important urban planning strategy to cope with emergent global environmental changes.
ContributorsWang, Chenghao (Author) / Wang, Zhihua (Thesis advisor) / Myint, Soe W. (Committee member) / Huang, Huei-Ping (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2019