Matching Items (16)
Filtering by

Clear all filters

136689-Thumbnail Image.png
Description
This paper explores women and bicycling, with the focus of looking at how to get more women onto the bicycle in Tempe, Arizona. The main areas of interest for this study are improvements to bicycling infrastructure and an increase in the safety and the perception of safety of women cyclists

This paper explores women and bicycling, with the focus of looking at how to get more women onto the bicycle in Tempe, Arizona. The main areas of interest for this study are improvements to bicycling infrastructure and an increase in the safety and the perception of safety of women cyclists in the Tempe area. In order to explore this topic, an online survey of 75 Arizona State students was conducted. From the results women were primarily concerned with their safety due to the condition of the overall infrastructure and the lack of bicycle related improvements. Research such as this that examines women and cycling is significant due to the current underrepresentation of women in the cycling community and has the potential to improve safety and increase bicycle ridership.
ContributorsStarr, Nicole (Author) / Kelley, Jason (Thesis director) / Golub, Aaron (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor)
Created2014-12
136399-Thumbnail Image.png
Description
Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City,

Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City, Abu Dhabi, UAE. Key aspects of the arcology that could be applied to an existing urban fabric are identified, such as urban design fostering social interaction, reduction of automobile dependency, and a development pattern that combats sprawl. Through interviews with local representatives, a holistic approach to applying arcology concepts to the Phoenix Metro Area is devised.
ContributorsSpencer, Sarah Anne (Author) / Manuel-Navarrete, David (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2015-05
137183-Thumbnail Image.png
Description
City planners often use bicycle friendly rating schemes as tools to guide them in their efforts to establish a bicycle community. However, the criteria and methodologies used vary from program to program and often do not encapsulate all of the necessary elements that comprise true bicycle friendliness. This report documents

City planners often use bicycle friendly rating schemes as tools to guide them in their efforts to establish a bicycle community. However, the criteria and methodologies used vary from program to program and often do not encapsulate all of the necessary elements that comprise true bicycle friendliness. This report documents the important elements, strategies, and best practices that well-established Dutch, Danish, and German bike friendly cities exhibit to create a baseline standard for bicycle friendliness. Not all rating programs' criteria and methodologies align perfectly within this understanding of bicycle friendliness. City planners should use these programs as tools while keeping their limitations in consideration. The City of Tempe currently uses the League of American Bicyclists Bicycle Friendly Community program and BikeScore.com. By understanding the limitations associated with these programs, Tempe should move forward in their pursuit of bicycle friendliness by using multiple rating programs simultaneously and by looking at top-rated cities' strategies to enhance their infrastructure, network, urban form, and biking culture.
ContributorsTrombino, Frank Michael (Author) / Golub, Aaron (Thesis director) / Kelley, Jason (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2014-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
137095-Thumbnail Image.png
Description
There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233

There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233 and the thorium fuel cycle have failed to have significant presence in the field. Historically, nuclear energy development in the United States, and thorium development in particular, has been tied to the predominant societal outlook on the field, and thorium was only pursued seriously as an option during a period when nuclear energy was heavily favored, and resources seemed scarce. Recently, thorium-based energy has been experiencing a revival in interest in response to pollution concerns regarding fossil fuels. While public opinion is still wary of uranium, thorium-based designs could reduce reliance on fossil fuels while avoiding traditional drawbacks of nuclear energy. The thorium fuel cycle is more protected against proliferation, but is also much more expensive than the uranium-plutonium cycle in a typical reactor setup. Liquid-fueled molten salt reactor designs, however, bypass the prohibitive expense of U-233 refabrication by avoiding the stage entirely, keeping the chain reaction running with nothing but thorium input required. MSRs can use any fissile material as fuel, and are relatively safe to operate, due to passive features inherent to the design.
ContributorsGalbiati, Joseph Nicco (Author) / Martin, Thomas (Thesis director) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2014-05
134630-Thumbnail Image.png
Description
This paper seeks to analyze the relationship between energy subsidies on fossil fuels by countries and corresponding energy consumption, specifically electricity, by its citizens and occupants. The purpose of this was to determine whether pre-tax subsidies and post-tax subsidies have an effect on that consumption. This paper will discuss the

This paper seeks to analyze the relationship between energy subsidies on fossil fuels by countries and corresponding energy consumption, specifically electricity, by its citizens and occupants. The purpose of this was to determine whether pre-tax subsidies and post-tax subsidies have an effect on that consumption. This paper will discuss the prospect of accounting for post-tax subsidies as a method to curb rampant energy consumption throughout the world, with the focus being on residential electricity use. The two case studies, the Netherlands and Saudi Arabia, will illustrate the consumption patterns in relatively similar economic societies with different subsidy policies. Saudi Arabia will be a high pre-tax subsidy example while the Netherlands will be shown to account for some of the post-tax subsidies through an externality tax system. At the end of this analysis, this paper will show that the heavy subsidization of electricity production is strongly correlated to residential electricity consumption at levels that many officials would deem unsustainable, and that as such, subsidy reform is both beneficial and necessary.
ContributorsCorona, Kyle (Author) / Kelman, Jonathan (Thesis director) / Breetz, Hanna (Committee member) / School of Sustainability (Contributor, Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This project was inspired by Dr. Kelli L. Larson’s research which disproved three common landscaping misconceptions in the Phoenix Valley. The first misconception states that newcomers, not long-time Phoenicians more often have and prefer grassy lawns instead of xeric, desert-adapted landscapes when actually the opposite is true. Secondly, the rise

This project was inspired by Dr. Kelli L. Larson’s research which disproved three common landscaping misconceptions in the Phoenix Valley. The first misconception states that newcomers, not long-time Phoenicians more often have and prefer grassy lawns instead of xeric, desert-adapted landscapes when actually the opposite is true. Secondly, the rise in xeric landscapes is not due to personal choice but rather a variety of other factors such as developer decisions. Finally, Dr. Larson’s research also disproves the assumption that people who possess pro-environmental attitudes correspondingly demonstrate sustainable landscaping behavior, and finds that people with those attitudes actually tend to irrigate more frequently in the winter months. Debunking these misconceptions is important because the long-term impacts of global climate change could have effects on water use in the desert southwest, and promoting water conservation in urban residential landscaping is an important step in the creation of sustainable water use policy. <br/><br/>The goal of my project was to make this information more accessible to broader public audiences who may not have access to it outside of research circles. I decided to create a zine, a small batch, hand-made mini-magazine, centered around disproving these myths so that the information could be distributed to broader audiences. I conducted informal stakeholder interviews to inform my design in order to appeal to those audiences, and constructed a 16-page booklet which debunked the myths and encouraged critical thinking about individual water use and urban landscaping habits. The zine included hand-painted illustrations and was constructed as a physical copy with the intention of eventually copying and distributing both a physical and digital version. The purpose of this project is to create a way of accessing reliable information about urban landscaping for residents of the Phoenix Valley, where the climate and geography necessitate water conservation.

ContributorsThompson, Camryn Elizabeth (Author) / Larson, Kelli L. (Thesis director) / Foushée, Danielle (Committee member) / School of Sustainability (Contributor) / The Design School (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

There are unfortunately very few curricular guides that focus on community engagement within the higher education of landscape architecture. A Beginner’s Guide to Community Engagement in the Curriculum of Landscape Architecture and Urban Planning to Improve Social Justice and Sustainability helps resolve this issue and serves as a resource to

There are unfortunately very few curricular guides that focus on community engagement within the higher education of landscape architecture. A Beginner’s Guide to Community Engagement in the Curriculum of Landscape Architecture and Urban Planning to Improve Social Justice and Sustainability helps resolve this issue and serves as a resource to students, educators, designers, and more. The guide centralizes a diverse collection of resources, guides students through learning materials, shares insight, and proposes potential community engagement methods. The booklet aims to help readers understand the importance of community engagement in design and shares different curricular approaches to introduce the work to students.

ContributorsNeeson, Margaret (Author) / Cheng, Chingwen (Thesis director) / Coseo, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / The Design School (Contributor)
Created2023-05
132293-Thumbnail Image.png
Description
Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and

Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and selectivity. Mixed matrix membranes (MMMs) containing two-dimensional (2D) metal-organic frameworks (MOFs) as fillers are a highly sought approach to redress this trade-off given their enhanced gas permeabilities and selectivities compared to the pure polymeric membrane. These MMMs are increasingly gaining attention by researchers due to their unique properties and wide small- and large-scale gas separation applications. However, straightforward and scalable methods for the synthesis of MOFs nanosheets have thus far been persistently elusive. This study reports the single-phase preparation, and characterization of MMMs with 2D MOFs nanosheets as fillers. The prepared MOF and the polymer matrix form the ‘dense’ MMMs which exhibit increased gas diffusion resistance, and thus improved separation abilities. The single-phase approach was more successful than the bi-phase at synthesizing the MOFs. The influence of sonication power and time on the characteristics and performance of the membranes are examined and discussed. Increasing the sonication power from 50% to 100% reduces the pore size. Additionally, the ultimate effect on the selectivity and permeance of the MMMs with different single gases is reported. Analysis of results with various gas mixers indicates further performance improvements in these MMMs could be achieved by increasing sonication time and tuning suitable membrane thicknesses. Reported results reveal that MMMs are excellent candidates for next-generation gas mixture separations, with potential applications in CO2 capture and storage, hydrogen recovery, alkene recovery from alkanes, and natural gas purification.
ContributorsNkuutu, John (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05