Matching Items (5)
Filtering by

Clear all filters

152852-Thumbnail Image.png
Description
The environmental and economic assessment of neighborhood-scale transit-oriented urban form changes should include initial construction impacts through long-term use to fully understand the benefits and costs of smart growth policies. The long-term impacts of moving people closer to transit require the coupling of behavioral forecasting with environmental assessment. Using new

The environmental and economic assessment of neighborhood-scale transit-oriented urban form changes should include initial construction impacts through long-term use to fully understand the benefits and costs of smart growth policies. The long-term impacts of moving people closer to transit require the coupling of behavioral forecasting with environmental assessment. Using new light rail and bus rapid transit in Los Angeles, California as a case study, a life-cycle environmental and economic assessment is developed to assess the potential range of impacts resulting from mixed-use infill development. An integrated transportation and land use life-cycle assessment framework is developed to estimate energy consumption, air emissions, and economic (public, developer, and user) costs. Residential and commercial buildings, automobile travel, and transit operation changes are included and a 60-year forecast is developed that compares transit-oriented growth against growth in areas without close access to high-capacity transit service. The results show that commercial developments create the greatest potential for impact reductions followed by residential commute shifts to transit, both of which may be effected by access to high-capacity transit, reduced parking requirements, and developer incentives. Greenhouse gas emission reductions up to 470 Gg CO2-equivalents per year can be achieved with potential costs savings for TOD users. The potential for respiratory impacts (PM10-equivalents) and smog formation can be reduced by 28-35%. The shift from business-as-usual growth to transit-oriented development can decrease user costs by $3,100 per household per year over the building lifetime, despite higher rental costs within the mixed-use development.
ContributorsNahlik, Matthew (Author) / Chester, Mikhail V (Thesis advisor) / Pendyala, Ram (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2014
155564-Thumbnail Image.png
Description
Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing, and releasing energy through sensible and chemical potential. This study

Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing, and releasing energy through sensible and chemical potential. This study investigates the performance of a 111.7 MWe CSP system coupled with a thermochemical energy storage system (TCES) that uses a redox active metal oxide acting as the heat transfer fluid. A one-dimensional thermodynamic model is introduced for the novel CSP system design, with detailed designs of the underlying nine components developed from first principles and empirical data of the heat transfer media. The model is used to (a) size components, (b) examine intraday operational behaviors of the system against varying solar insolation, (c) calculate annual productivity and performance characteristics over a simulated year, and (d) evaluate factors that affect system performance using sensitivity analysis. Time series simulations use hourly direct normal irradiance (DNI) data for Barstow, California, USA. The nominal system design uses a solar multiple of 1.8 with a storage capacity of six hours for off-sun power generation. The mass of particles to achieve six hours of storage weighs 5,140 metric tonnes. Capacity factor increases by 3.55% for an increase in storage capacity to eight hours which requires an increase in storage volume by 33% or 737 m3, or plant design can be improved by decreasing solar multiple to 1.6 to increase the ratio of annual capacity factor to solar multiple. The solar reduction receiver is the focal point for the concentrated solar energy for inducing an endothermic reaction in the particles under low partial pressure of oxygen, and the reoxidation reactor induces the opposite exothermic reaction by mixing the particles with air to power an air Brayton engine. Stream flow data indicate the solar receiver experiences the largest thermal loss of any component, excluding the solar field. Design and sensitivity analysis of thermal insulation layers for the solar receiver show that additional RSLE-57 insulation material achieves the greatest increase in energetic efficiency of the five materials investigated.
ContributorsGorman, Brandon Tom (Author) / Johnson, Nathan G (Thesis advisor) / Stechel, Ellen B (Committee member) / Chester, Mikhail V (Committee member) / Arizona State University (Publisher)
Created2017
171754-Thumbnail Image.png
Description
Pluvial flooding is a costly, injurious, and even deadly phenomenon with which cities will always contend. However, cities may reduce their risk of flood exposure by changing historically dominant patterns of development that have removed natural landscape features and reduce the damages that flooding causes by identifying and supporting vulnerable

Pluvial flooding is a costly, injurious, and even deadly phenomenon with which cities will always contend. However, cities may reduce their risk of flood exposure by changing historically dominant patterns of development that have removed natural landscape features and reduce the damages that flooding causes by identifying and supporting vulnerable populations. Accomplishing either goal requires the development and application of appropriate frameworks for modeling or recording flood exposure. In this dissertation, I used modeling and surveying methods for assessing pluvial flood exposure in two cities, first in Valdivia, Chile, and then in Hermosillo, México. I open with a summary on pluvial flood risk in the present day and the threat it may pose under changing climates. In the second chapter, I explored how a form of urban ecological infrastructure (UEI), the wetland, is being wielded in Valdivia toward pluvial flood mitigation, and found that wetland daily, seasonal, and interannual changes in wetland surface and soil water storage alter pluvial flood risk in the city. In the third chapter, I used a mixed methodology, including projections of future land cover generated by cellular automata models with inputs from visioning workshops conducted by the Urban Resilience to Extremes Sustainability Research Network (UREx SRN), and found that wetland loss in future land configurations may lead to increased pluvial flood risk. In the fourth chapter, I combined these land cover models from the third chapter with downscaled climate data on precipitation, also generated by the UREx SRN, and found that wetland conservation can help to mitigate the pluvial flood risk posed by changing patterns of rainfall. In the fifth chapter, I applied the Arc-Malstrøm method for pluvial flood assessment in Hermosillo, México, and compared it with the more traditional rational method for flood assessment, and through accompanying surveys found that perception of flood risk is significantly affected by flood dimensions and impacts. This dissertation concludes with a synthesis of pluvial flood risk assessment, suggestions for improvements to modeling, as well as suggestions for future research on pluvial flood risk assessment in cities. This dissertation advances the understanding of the utility of inland wetland UEI in cities under present and future land cover and climate conditions. It also qualifies the utility of common and new pluvial flood risk assessments and offers research directions for future pluvial flood assessments.
ContributorsSauer, Jason R (Author) / Grimm, Nancy B (Thesis advisor) / Chester, Mikhail V (Committee member) / Cook, Elizabeth M (Committee member) / Childers, Daniel L (Committee member) / Eakin, Hallie (Committee member) / Arizona State University (Publisher)
Created2022
157609-Thumbnail Image.png
Description

Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research has established how heat poses a threat to urban inhabitants

Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research has established how heat poses a threat to urban inhabitants and how urban infrastructure design can lead to increased urban heat. Yet there are gaps in understanding how urban communities accumulate heat exposure, and how significantly the urban transportation system influences or exacerbates the many issues of urban heat. This dissertation focuses on advancing the understanding of how modern urban transportation influences urban heat and human heat exposure through three research objectives: 1) Investigate how human activity results in different outdoor heat exposure; 2) Quantify the growth and extent of urban parking infrastructure; and 3) Model and analyze how pavements and vehicles contribute to urban heat.

In the urban US, traveling outdoors (e.g. biking or walking) is the most frequent activity to cause heat exposure during hot periods. However, outdoor travel durations are often very short, and other longer activities such as outdoor housework and recreation contribute more to cumulative urban heat exposure. In Phoenix, parking and roadway pavement infrastructure contributes significantly to the urban heat balance, especially during summer afternoons, and vehicles only contribute significantly in local areas with high density rush hour vehicle travel. Future development of urban areas (especially those with concerns of extreme heat) should focus on ensuring access and mobility for its inhabitants without sacrificing thermal comfort. This may require urban redesign of transportation systems to be less auto-centric, but without clear pathways to mitigating impacts of urban heat, it may be difficult to promote transitions to travel modes that inherently necessitate heat exposure. Transportation planners and engineers need to be cognizant of the pathways to increased urban heat and human heat exposure when planning and designing urban transportation systems.

ContributorsHoehne, Christopher Glenn (Author) / Chester, Mikhail V (Thesis advisor) / Hondula, David M. (Committee member) / Sailor, David (Committee member) / Pendyala, Ram M. (Committee member) / Arizona State University (Publisher)
Created2019
Description
Extreme weather events, such as hurricanes, continue to disrupt critical infrastructure like energy grids that provide lifeline services for urban systems, thus making resilience imperative for stakeholders, infrastructure managers, and community leaders to strategize in the face of 21st-century challenges. In Puerto Rico after Hurricane Maria, for example, the energy

Extreme weather events, such as hurricanes, continue to disrupt critical infrastructure like energy grids that provide lifeline services for urban systems, thus making resilience imperative for stakeholders, infrastructure managers, and community leaders to strategize in the face of 21st-century challenges. In Puerto Rico after Hurricane Maria, for example, the energy system took over nine months to recover in parts of the island, thousands of lives were lost, and livelihoods were severely impacted. Urban systems consist of interconnected human networks and physical infrastructure, and the subsequent complexity that is increasingly difficult to make sense of toward resilience enhancing efforts. While the resilience paradigm has continued to progress among and between several disciplinary fields, such as social science and engineering, an ongoing challenge is integrating social and technical approaches for resilience research. Misaligned or siloed perspectives can lead to misinformative and inadequate strategies that undercut inherent capacities or ultimately result in maladaptive infrastructure, social hardship, and sunken investments. This dissertation contributes toward integrating the social and technical resilience domains and transitioning established disaster resilience assessments into complexity perspectives by asking the overarching question: How can a multiplicity of resilience assessments be integrated by geographic and network mapping approaches to better capture the complexity of urban systems, using Hurricane Maria in Puerto Rico as a case study? The first chapter demonstrates how social metrics can be used in a socio-technical network modeling framework for a large-scale electrical system, presents a novel framing of social hardship due to disasters, and proposes a method for developing a social hardship metric using a treatment-effect approach. A second chapter presents a conceptual analysis of disaster resilience indicators from a complexity perspective and links socio-ecological systems resilience principles to tenets of complexity. A third chapter presents a novel methodology for integrating social complexity with performance-based metrics by leveraging distributed ethnographies and a thick mapping approach. Lastly, a concluding chapter synthesizes the previous chapters to discuss a broad framing for socio-technical resilience assessments, the role of space and place as anchors for multiple framings of a complex system, caveats given ongoing developments in Puerto Rico, and implications for collaborative resilience research.
ContributorsCarvalhaes, Thomaz (Author) / Chester, Mikhail V (Thesis advisor) / Reddy, Agami T (Thesis advisor) / Allenby, Braden R (Committee member) / Arizona State University (Publisher)
Created2021