Matching Items (3)
Filtering by

Clear all filters

168408-Thumbnail Image.png
Description
Traditional infrastructure design approaches were born with industrialization. During this time the relatively stable environments allowed infrastructure systems to reliably provide service with networks designed to precise parameters and organizations fixated on maximizing efficiency. Now, infrastructure systems face the challenge of operating in the Anthropocene, an era of complexity. The

Traditional infrastructure design approaches were born with industrialization. During this time the relatively stable environments allowed infrastructure systems to reliably provide service with networks designed to precise parameters and organizations fixated on maximizing efficiency. Now, infrastructure systems face the challenge of operating in the Anthropocene, an era of complexity. The environments in which infrastructure systems operate are changing more rapidly than the technologies and governance systems of infrastructure. Infrastructure systems will need to be resilient to navigate stability and instability and avoid obsolescence. This dissertation addresses how infrastructure systems could be designed for the Anthropocene, assessing technologies able to operate with uncertainty, rethinking the principles of technology design, and restructuring infrastructure governance. Resilience, in engineering, has often been defined as resistance to known disturbances with a focus on infrastructure assets. Resilience, more broadly reviewed, includes resistance, adaptation, and transformation across physical and governance domains. This dissertation constructs a foundation for resilient infrastructure through an assessment of resilience paradigms in engineering, complexity and deep uncertainty (Chapter 2), ecology (Chapter 3), and organizational change and leadership (Chapter 4). The second chapter reconciles frameworks of complexity and deep uncertainty to help infrastructure managers navigate the instability infrastructure systems face, with a focus on climate change. The third chapter identifies competencies of resilience in infrastructure theory and practice and compares those competencies with ‘Life’s Principles’ in ecology, presenting opportunities for growth and innovation in infrastructure resilience and highlighting the need for satisficed (to satisfy and suffice) solutions. The fourth chapter navigates pressures of exploitation and exploration that infrastructure institutions face during periods of stability and instability, proposing leadership capabilities to enhance institutional resilience. Finally, the dissertation is concluded with a chapter synthesizing the previous chapters, providing guidance for alternative design approaches for advancing resilient infrastructure. Combined, the work challenges the basic mental models used by engineers when approaching infrastructure design and recommends new ways of doing and thinking for the accelerating and increasingly uncertain conditions of the future.
ContributorsHelmrich, Alysha Marie (Author) / Chester, Mikhail V (Thesis advisor) / Grimm, Nancy B (Committee member) / Garcia, Margaret (Committee member) / Meerow, Sara (Committee member) / Arizona State University (Publisher)
Created2021
187430-Thumbnail Image.png
Description
Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e.,

Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e., Black Swan events). Infrastructure managers currently seek pathways through this complexity. To this end, reimagined – multifaceted – definitions of resilience must inform future decisions. Moreover, the hazardous environment of the Anthropocene demands flexibility and dynamic reprioritization of infrastructure and resources during disturbances. In this dissertation, the introduction will briefly explain foundational concepts, frameworks, and models that will inform the rest of this work. Chapter 2 investigates the concept of dynamic criticality: the skill to reprioritize amidst disturbances, repeating this process with each new disturbance. There is a dearth of insight requisite skillsets for infrastructure organizations to attain dynamic criticality. Therefore, this dissertation searches other industries and finds goals, structures, sensemaking, and strategic best practices to propose a contextualized framework for infrastructure. Chapters 3 and 4 seek insight into modeling infrastructure interdependencies and cascading failure to elucidate extreme outcomes such as Black Swans. Chapter 3 explores this concept through a theoretical analysis considering the use of realistic but fictional (i.e., synthetic) models to simulate interdependent behavior and cascading failures. This chapter also discusses potential uses of synthetic networks for infrastructure resilience research and barriers to future success. Chapter 4 tests the preceding theoretical analysis with an empirical study. Chapter 4 builds realistic networks with dependency between power and water models and simulates cascading failure. The discussion considers the future application of similar modeling efforts and how these techniques can help infrastructure managers scan the horizon for Black Swans. Finally, Chapter 5 concludes the dissertation with a synthesis of the findings from the previous chapters, discusses the boundaries and limitations, and proposes inspirations for future work.
ContributorsHoff, Ryan Michael (Author) / Chester, Mikhail V (Thesis advisor) / Allenby, Braden (Committee member) / Johnson, Nathan (Committee member) / McPhearson, Timon (Committee member) / Arizona State University (Publisher)
Created2023
171754-Thumbnail Image.png
Description
Pluvial flooding is a costly, injurious, and even deadly phenomenon with which cities will always contend. However, cities may reduce their risk of flood exposure by changing historically dominant patterns of development that have removed natural landscape features and reduce the damages that flooding causes by identifying and supporting vulnerable

Pluvial flooding is a costly, injurious, and even deadly phenomenon with which cities will always contend. However, cities may reduce their risk of flood exposure by changing historically dominant patterns of development that have removed natural landscape features and reduce the damages that flooding causes by identifying and supporting vulnerable populations. Accomplishing either goal requires the development and application of appropriate frameworks for modeling or recording flood exposure. In this dissertation, I used modeling and surveying methods for assessing pluvial flood exposure in two cities, first in Valdivia, Chile, and then in Hermosillo, México. I open with a summary on pluvial flood risk in the present day and the threat it may pose under changing climates. In the second chapter, I explored how a form of urban ecological infrastructure (UEI), the wetland, is being wielded in Valdivia toward pluvial flood mitigation, and found that wetland daily, seasonal, and interannual changes in wetland surface and soil water storage alter pluvial flood risk in the city. In the third chapter, I used a mixed methodology, including projections of future land cover generated by cellular automata models with inputs from visioning workshops conducted by the Urban Resilience to Extremes Sustainability Research Network (UREx SRN), and found that wetland loss in future land configurations may lead to increased pluvial flood risk. In the fourth chapter, I combined these land cover models from the third chapter with downscaled climate data on precipitation, also generated by the UREx SRN, and found that wetland conservation can help to mitigate the pluvial flood risk posed by changing patterns of rainfall. In the fifth chapter, I applied the Arc-Malstrøm method for pluvial flood assessment in Hermosillo, México, and compared it with the more traditional rational method for flood assessment, and through accompanying surveys found that perception of flood risk is significantly affected by flood dimensions and impacts. This dissertation concludes with a synthesis of pluvial flood risk assessment, suggestions for improvements to modeling, as well as suggestions for future research on pluvial flood risk assessment in cities. This dissertation advances the understanding of the utility of inland wetland UEI in cities under present and future land cover and climate conditions. It also qualifies the utility of common and new pluvial flood risk assessments and offers research directions for future pluvial flood assessments.
ContributorsSauer, Jason R (Author) / Grimm, Nancy B (Thesis advisor) / Chester, Mikhail V (Committee member) / Cook, Elizabeth M (Committee member) / Childers, Daniel L (Committee member) / Eakin, Hallie (Committee member) / Arizona State University (Publisher)
Created2022