Matching Items (148)
Filtering by

Clear all filters

161784-Thumbnail Image.png
Description
This thesis provides evidence that China has maximized building infrastructure byseeking new ways to utilize underground space. China is a shining example of how integrating underground space will improve quality of life, transportation, entertainment centers, and national safety. China is rethinking how they develop its cities by creating tunnels, commercial buildings, parking lots,

This thesis provides evidence that China has maximized building infrastructure byseeking new ways to utilize underground space. China is a shining example of how integrating underground space will improve quality of life, transportation, entertainment centers, and national safety. China is rethinking how they develop its cities by creating tunnels, commercial buildings, parking lots, subways, utility service tunnels, military defense bunkers, and storage facilities underground. Hundreds of kilometers of tunnels alleviate China’s growing traffic congestion problem, to help with vehicle congestion, other means of transportation are created like subway systems that sprawl underneath the city. Commercial buildings can be built underground to maximize the vertical growth of businesses in a city. A high number of personal vehicles means cities have to increase the availability of parking spaces, with underground parking garages, space can be maximized to hold hundreds of cars underground while maintaining commercial buildings above ground. The ease of having a central utility tunnel that houses all the utilities in one place is how China is forward-thinking of the maintenance of their future cities. As China grows, they must be prepared to protect their citizens and leaders so they store their most important military equipment underground so they can keep them secure. As a way of reusing old dried-up oil wells, natural gas is stored underground to mitigate risk and cut down on costs for storage facilities. China has made significant strides to ensure a bright future for its citizens, with the utilization of underground space, China maximizes productivity and quality of life for its people.
ContributorsWu, Binqing (Author) / Ariaratnam, Samuel SA (Thesis advisor) / Chong, Oswald OS (Committee member) / Czerniawski, Thomas TC (Committee member) / Arizona State University (Publisher)
Created2021
161609-Thumbnail Image.png
Description
In recent decades animal agriculture in the U.S. has moved from small, distributed operations to large, Concentrated Animal Feeding Operations (CAFOs). CAFOs are defined by federal regulations based on animal numbers and confinement criteria. Because of the size of these operations, the excessive amount of manure generated is typically stored

In recent decades animal agriculture in the U.S. has moved from small, distributed operations to large, Concentrated Animal Feeding Operations (CAFOs). CAFOs are defined by federal regulations based on animal numbers and confinement criteria. Because of the size of these operations, the excessive amount of manure generated is typically stored in lagoons, pits, or barns prior to field application or transport to other farms. Water quality near CAFOs can be impaired through the overflow of lagoons, storm runoff, or lagoon seepage. Assessing water quality impacts of CAFOs in a modeling framework has been difficult because of data paucity. A CAFO lagoon module was developed to assess lagoon overflow risk, groundwater quality, and ammonia emissions of a dairy lagoon. A groundwater quality assessment of a Dairy Lagoon in Lynden Washington was used to calibrate and validate the groundwater quality model. Groundwater down stream of the lagoon was negatively impaired. The long-term effects of this lagoon on water quality were explored as well as the effectiveness of improving the lagoon lining to reduce seepage. This model can be used to improve understanding of the impacts of CAFO lagoon seepage and develop sustainable management practices at the watershed scale for these key components of the agricultural landscape.
ContributorsRudko, Noah (Author) / Muenich, Rebecca (Thesis advisor) / Garcia, Margaret (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2021
161630-Thumbnail Image.png
Description
There is a considerable need for improved understanding of the outcome and amounts of water used to manage urban landscapes in arid and semiarid cities. Outdoor irrigation in urban parks consists of a large fraction of water demands in Phoenix, Arizona. Hence, ecohydrological processes need to be considered to improve

There is a considerable need for improved understanding of the outcome and amounts of water used to manage urban landscapes in arid and semiarid cities. Outdoor irrigation in urban parks consists of a large fraction of water demands in Phoenix, Arizona. Hence, ecohydrological processes need to be considered to improve outdoor irrigation management. With the goal of reducing outdoor water use and advancing the general knowledge of water fluxes in urban parks, this study explores water conservation opportunities in an arid city through observations and modeling.Most urban parks in Phoenix consist of a mosaic of turfgrass and trees which receive scheduled maintenance, fertilization and watering through sprinkler or flood irrigation. In this study, the effects that different watering practices, turfgrass management and soil conditions have on soil moisture observations in urban parks are evaluated. Soil moisture stations were deployed at three parks with stations at control plots with no compost application and compost treated sites with either a once or twice per year application instead of traditional fertilizer. An eddy covariance system was installed at a park to help quantify water losses and water, energy and carbon fluxes between the turfgrass and atmosphere. Additional meteorological observations are provided through a network of weather stations. The assessment covers over one year of observations, including the period of turfgrass growth in the warm season, and a period of dormancy during the cool season. The observations were used to setup and test a plot-scale soil water balance model to simulate changes in daily soil moisture in response to irrigation, precipitation and evapotranspiration demand for each park. Combining modeling and observations of climate-soil-vegetation processes, I provide guidance on irrigation schedules and management that could help minimize water losses while supporting turfgrass health in desert urban parks. The irrigation scenarios suggest that water savings of at least 18% can be achieved at the three sites. While the application of compost treatment to study plots did not show clear improvements in soil water retention when compared to the control plots, this study shows that water conservation can be promoted while maintaining low plant water stress.
ContributorsKindler, Mercedes (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Garcia, Margaret (Committee member) / Arizona State University (Publisher)
Created2021
161992-Thumbnail Image.png
Description
Composite materials have gained interest in the aerospace, mechanical and civil engineering industries due to their desirable properties - high specific strength and modulus, and superior resistance to fatigue. Design engineers greatly benefit from a reliable predictive tool that can calculate the deformations, strains, and stresses of composites under uniaxial

Composite materials have gained interest in the aerospace, mechanical and civil engineering industries due to their desirable properties - high specific strength and modulus, and superior resistance to fatigue. Design engineers greatly benefit from a reliable predictive tool that can calculate the deformations, strains, and stresses of composites under uniaxial and multiaxial states of loading including damage and failure predictions. Obtaining this information from (laboratory) experimental testing is costly, time consuming, and sometimes, impractical. On the other hand, numerical modeling of composite materials provides a tool (virtual testing) that can be used as a supplemental and an alternate procedure to obtain data that either cannot be readily obtained via experiments or is not possible with the currently available experimental setup. In this study, a unidirectional composite (Toray T800-F3900) is modeled at the constituent level using repeated unit cells (RUC) so as to obtain homogenized response all the way from the unloaded state up until failure (defined as complete loss of load carrying capacity). The RUC-based model is first calibrated and validated against the principal material direction laboratory tests involving unidirectional loading states. Subsequently, the models are subjected to multi-directional states of loading to generate a point cloud failure data under in-plane and out-of-plane biaxial loading conditions. Failure surfaces thus generated are plotted and compared against analytical failure theories. Results indicate that the developed process and framework can be used to generate a reliable failure prediction procedure that can possibly be used for a variety of composite systems.
ContributorsKatusele, Daniel Mutahwa (Author) / Rajan, Subramaniam (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2021
162008-Thumbnail Image.png
Description
Bridge scour at piers is a major problem for design and for maintaining old infrastructure. The current methods require their own upkeep and there may be better ways to mitigate scour. I looked to the mangrove forests of coastal environments for inspiration and have developed a 2D model to test

Bridge scour at piers is a major problem for design and for maintaining old infrastructure. The current methods require their own upkeep and there may be better ways to mitigate scour. I looked to the mangrove forests of coastal environments for inspiration and have developed a 2D model to test the efficacy of placing a mangrove-root inspired system to mitigate scour. My model tests the hydrodynamics of the root systems, but there are additional benefits that can be used as bioinspiration in the future (altering the surrounding chemistry and mechanical properties of the soil).Adding a mangrove inspired minipile system to bridge piers changes scour parameters within my 2D COMSOL models. For the volume of material added, the minipiles compare favorably to larger sacrificial piles as they reduce A_wcz and 〖τ'〗_max by similar (or even better) amounts. These two parameters are indicators of scour in the field. Within the minipile experiments, it is more beneficial to place them upstream of the main bridge pier as their own ‘mangrove forest.’ The value of A_wcz and 〖τ'〗_max for complex 2D models of scour is unclear and physical experiments need to be performed. The model geometry is based on the dimensions of the experimental flume to be used in future studies and the model results have not yet been verified through experiments and field trials. Scale effects may be present which cannot be accounted for in the 2D models. Therefore future work should be conducted to test ‘mangrove forest’ minipile systems in 3D space, in flume experiments, and in field trials.
ContributorsEnns, Andrew Carl (Author) / van Paassen, Leon (Thesis advisor) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2021
153560-Thumbnail Image.png
Description
Large-scale cultivation of photosynthetic microorganisms for the production of biodiesel and other valuable commodities must be made more efficient. Recycling the water and nutrients acquired from biomass harvesting promotes a more sustainable and economically viable enterprise. This study reports on growing the cyanobacterium Synechocystis sp. PCC 6803 using

Large-scale cultivation of photosynthetic microorganisms for the production of biodiesel and other valuable commodities must be made more efficient. Recycling the water and nutrients acquired from biomass harvesting promotes a more sustainable and economically viable enterprise. This study reports on growing the cyanobacterium Synechocystis sp. PCC 6803 using permeate obtained from concentrating the biomass by cross-flow membrane filtration. I used a kinetic model based on the available light intensity (LI) to predict biomass productivity and evaluate overall performance.

During the initial phase of the study, I integrated a membrane filter with a bench-top photobioreactor (PBR) and created a continuously operating system. Recycling permeate reduced the amount of fresh medium delivered to the PBR by 45%. Biomass production rates as high as 400 mg-DW/L/d (9.2 g-DW/m2/d) were sustained under constant lighting over a 12-day period.

In the next phase, I operated the system as a sequencing batch reactor (SBR), which improved control over nutrient delivery and increased the concentration factor of filtered biomass (from 1.8 to 6.8). I developed unique system parameters to compute the amount of recycled permeate in the reactor and the actual hydraulic retention time during SBR operation. The amount of medium delivered to the system was reduced by up to 80%, and growth rates were consistent at variable amounts of repeatedly recycled permeate. The light-based model accurately predicted growth when biofilm was not present. Coupled with mass ratios for PCC 6803, these predictions facilitated efficient delivery of nitrogen and phosphorus. Daily biomass production rates and specific growth rates equal to 360 mg-DW/L/d (8.3 g/m2/d) and 1.0 d-1, respectively, were consistently achieved at a relatively low incident LI (180 µE/m2/s). Higher productivities (up to 550 mg-DW/L/d) occurred under increased LI (725 µE/m2/s), although the onset of biofilm impeded modeled performance.

Permeate did not cause any gradual growth inhibition. Repeated results showed cultures rapidly entered a stressed state, which was followed by widespread cell lysis. This phenomenon occurred independently of permeate recycling and was not caused by nutrient starvation. It may best be explained by negative allelopathic effects or viral infection as a result of mixed culture conditions.
ContributorsThompson, Matthew (Author) / Rittmann, Bruce E. (Thesis advisor) / Fox, Peter (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2015
151406-Thumbnail Image.png
Description
Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product

Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product with properties comparable to or better than those of ordinary Portland cement. The kinetics of alkali activation is highly dependent on the chemical composition of the binder material and the activator concentration. The influence of binder composition (slag, fly ash or both), different levels of alkalinity, expressed using the ratios of Na2O-to-binders (n) and activator SiO2-to-Na2O ratios (Ms), on the early age behavior in sodium silicate solution (waterglass) activated fly ash-slag blended systems is discussed in this thesis. Optimal binder composition and the n values are selected based on the setting times. Higher activator alkalinity (n value) is required when the amount of slag in the fly ash-slag blended mixtures is reduced. Isothermal calorimetry is performed to evaluate the early age hydration process and to understand the reaction kinetics of the alkali activated systems. The differences in the calorimetric signatures between waterglass activated slag and fly ash-slag blends facilitate an understanding of the impact of the binder composition on the reaction rates. Kinetic modeling is used to quantify the differences in reaction kinetics using the Exponential as well as the Knudsen method. The influence of temperature on the reaction kinetics of activated slag and fly ash-slag blends based on the hydration parameters are discussed. Very high compressive strengths can be obtained both at early ages as well as later ages (more than 70 MPa) with waterglass activated slag mortars. Compressive strength decreases with the increase in the fly ash content. A qualitative evidence of leaching is presented through the electrical conductivity changes in the saturating solution. The impact of leaching and the strength loss is found to be generally higher for the mixtures made using a higher activator Ms and a higher n value. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) is used to obtain information about the reaction products.
ContributorsChithiraputhiran, Sundara Raman (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniyam D (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
190712-Thumbnail Image.png
Description
This Master's thesis presents an experimental testing program conducted to assess the properties of coarse tailings from two Arizona copper mine heap leach pads. This testing program was motivated by recent failures in tailings impoundments, which has prompted a re-evaluation of tailings deposit stability worldwide. The testing was conducted using

This Master's thesis presents an experimental testing program conducted to assess the properties of coarse tailings from two Arizona copper mine heap leach pads. This testing program was motivated by recent failures in tailings impoundments, which has prompted a re-evaluation of tailings deposit stability worldwide. The testing was conducted using a unique large-scale Direct-Simple Shear (LDSS) device at Arizona State University (ASU). Prior to testing the tailings, the LDSS device had to be rehabilitated, as it had not been used for several years. The testing program included one-dimensional compression testing, shear wave velocity measurement, and monotonic shearing under constant volume conditions. The test results demonstrate the effectiveness of the LDSS device in obtaining representative data for tailings under monotonic loading. Recommendations for future improvements of the LDSS include enhancing the connection of monitoring instruments, utilizing more sophisticated software for shear wave velocity measurements, and optimizing the control system. The thesis contributes to geotechnical engineering by improving understanding and evaluation of tailings properties, thereby enhancing safety and environmental sustainability in the mining industry.
ContributorsHarker, Jack Michael (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Razmi, Jafar (Committee member) / Arizona State University (Publisher)
Created2023