Matching Items (295)
Filtering by

Clear all filters

149880-Thumbnail Image.png
Description
Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that

Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that is not unique and depends on both the characteristics of the rotorcraft and the sediment. The lack of fundamental understanding constrains models and limits development of technologies that could mitigate the adverse effects of brownout. This provides the over-arching motivation of the current work focusing on models of particle-laden sediment beds. The particular focus of the current investigations is numerical modeling of near-surface fluid-particle interactions in turbulent boundary layers with and without coherent vortices superimposed on the background flow, that model rotorcraft downwash. The simulations are performed with two groups of particles having different densities both of which display strong vortex-particle interaction close to the source location. The simulations include cases with inter-particle collisions and gravitational settling. Particle effects on the fluid are ignored. The numerical simulations are performed using an Euler- Lagrange method in which a fractional-step approach is used for the fluid and with the particulate phase advanced using Discrete Particle Simulation. The objectives are to gain insight into the fluid-particle dynamics that influence transport near the bed by analyzing the competing effects of the vortices, inter-particle collisions, and gravity. Following the introduction of coherent vortices into the domain, the structures convect downstream, dissipate, and then recover to an equilibrium state with the boundary layer. The particle phase displays an analogous return to an equilibrium state as the vortices dissipate and the boundary layer recovers, though this recovery is slower than for the fluid and is sensitive to the particle response time. The effects of inter-particle collisions are relatively strong and apparent throughout the flow, being most effective in the boundary layer. Gravitational settling increases the particle concentration near the wall and consequently increase inter-particle collisions.
ContributorsMorales, Fernando (Author) / Squires, Kyle D. (Thesis advisor) / Wells, Valana L. (Committee member) / Calhoun, Ronald J. (Committee member) / Arizona State University (Publisher)
Created2011
149654-Thumbnail Image.png
Description
Thermoelectric devices (TED's) continue to be an area of high interest in both thermal management and energy harvesting applications. Due to their compact size, reliable performance, and their ability to accomplish sub-ambient cooling, much effort is being focused on optimized methods for characterization and integration of TED's for future applications.

Thermoelectric devices (TED's) continue to be an area of high interest in both thermal management and energy harvesting applications. Due to their compact size, reliable performance, and their ability to accomplish sub-ambient cooling, much effort is being focused on optimized methods for characterization and integration of TED's for future applications. Predictive modeling methods can only achieve accurate results with robust input physical parameters, therefore TED characterization methods are critical for future development of the field. Often times, physical properties of TED sub-components are very well known, however the "effective" properties of a TED module can be difficult to measure with certainty. The module-level properties must be included in predictive modeling, since these include electrical and thermal contact resistances which are difficult to analytically derive. A unique characterization method is proposed, which offers the ability to directly measure all device-level physical parameters required for accurate modeling. Among many other unique features, the metrology allows the capability to perform an independent validation of empirical parameters by measuring parasitic heat losses. As support for the accuracy of the measured parameters, the metrology output from an off-the-shelf TED is used in a system-level thermal model to predict and validate observed metrology temperatures. Finally, as an extension to the benefits of this metrology, it is shown that resulting data can be used to empirically validate a device-level dimensionless relationship. The output provides a powerful performance prediction tool, since all physical behavior in a performance domain is captured using a single analytical relationship and can be plotted on a singe graph.
ContributorsLofgreen, Kelly (Author) / Phelan, Patrick E (Thesis advisor) / Posner, Jonathan (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2011
150256-Thumbnail Image.png
Description
While much effort in Stirling engine development is placed on making the high-temperature region of the Stirling engine warmer, this research explores methods to lower the temperature of the cold region by improving heat transfer in the cooler. This paper presents heat transfer coefficients obtained for a Stirling engine heat

While much effort in Stirling engine development is placed on making the high-temperature region of the Stirling engine warmer, this research explores methods to lower the temperature of the cold region by improving heat transfer in the cooler. This paper presents heat transfer coefficients obtained for a Stirling engine heat exchanger with oscillatory flow. The effects of oscillating frequency and input heat rate on the heat transfer coefficients are evaluated and details on the design and development of the heat exchanger test apparatus are also explained. Featured results include the relationship between overall heat transfer coefficients and oscillation frequency which increase from 21.5 to 46.1 Wm-2K-1 as the oscillation frequency increases from 6.0 to 19.3 Hz. A correlation for the Nusselt number on the inside of the heat exchange tubes in oscillatory flow is presented in a concise, dimensionless form in terms of the kinetic Reynolds number as a result of a statistical analysis. The test apparatus design is proven to be successful throughout its implementation due to the usefulness of data and clear trends observed. The author is not aware of any other publicly-available research on a Stirling engine cooler to the extent presented in this paper. Therefore, the present results are analyzed on a part-by-part basis and compared to segments of other research; however, strong correlations with data from other studies are not expected. The data presented in this paper are part of a continuing effort to better understand heat transfer properties in Stirling engines as well as other oscillating flow applications.
ContributorsEppard, Erin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
150159-Thumbnail Image.png
Description
The focus of this investigation is on the renewed assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of a curved beam. In light of difficulties encountered in an earlier modeling effort, the various steps involved in the construction of the reduced order

The focus of this investigation is on the renewed assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of a curved beam. In light of difficulties encountered in an earlier modeling effort, the various steps involved in the construction of the reduced order model are carefully reassessed. The selection of the basis functions is first addressed by comparison with the results of proper orthogonal decomposition (POD) analysis. The normal basis functions suggested earlier, i.e. the transverse linear modes of the corresponding flat beam, are shown in fact to be very close to the POD eigenvectors of the normal displacements and thus retained in the present effort. A strong connection is similarly established between the POD eigenvectors of the tangential displacements and the dual modes which are accordingly selected to complement the normal basis functions. The identification of the parameters of the reduced order model is revisited next and it is observed that the standard approach for their identification does not capture well the occurrence of snap-throughs. On this basis, a revised approach is proposed which is assessed first on the static, symmetric response of the beam to a uniform load. A very good to excellent matching between full finite element and ROM predicted responses validates the new identification procedure and motivates its application to the dynamic response of the beam which exhibits both symmetric and antisymmetric motions. While not quite as accurate as in the static case, the reduced order model predictions match well their full Nastran counterparts and support the reduced order model development strategy.
ContributorsZhang, Yaowen (Author) / Mignolet, Marc P (Thesis advisor) / Davidson, Joseph (Committee member) / Spottswood, Stephen M (Committee member) / Arizona State University (Publisher)
Created2011
150194-Thumbnail Image.png
Description
Processed pyro-gel contains castor oil with solid component of boehmite (Al-OOH). The pyro-gel is synthesized by heat to convert boehmite to gamma-Al2O3 and to a certain extent alpha-Al2O3 nano-particles and castor oil into carbon residue. The effect of heat on pyro-gel is analyzed in a series of experiments using two

Processed pyro-gel contains castor oil with solid component of boehmite (Al-OOH). The pyro-gel is synthesized by heat to convert boehmite to gamma-Al2O3 and to a certain extent alpha-Al2O3 nano-particles and castor oil into carbon residue. The effect of heat on pyro-gel is analyzed in a series of experiments using two burning chambers with the initial temperature as the main factor. The obtained temperature distribution profiles are studied and it is observed that the gel behaves very close to the theoretical prediction under heat. The carbon residue with Al2O3 is then processed for twelve hours and then analyzed to obtain the pore distribution of the Al2O3 nano-particles and the relation between the pore volume and the pre-heat temperature is analyzed. The obtained pore distribution shows the pore volume of Al2O3 nano-particles has direct relation to the pre-heat temperature. The experimental process involving the cylindrical reactor is simulated by using a finite rate chemistry eddy-dissipation model in a non-premixed and a porous mesh. The temperature distribution profile of the processed gel for both the meshes is obtained and a comparison is done with the data obtained in the experimental analysis. The temperature distribution obtained from the simulations show they follow a very similar profile to the temperature distribution obtained from experimental analysis, thus confirming the accuracy of both the models. The variation in numerical values between the experimental and simulation analysis is discussed. A physical model is proposed to determine the pore formation based on the temperature distribution obtained from experimental analysis and simulation.
ContributorsSagi, Varun (Author) / Lee, Taewoo (Thesis advisor) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2010
Description
The focus of this research is to investigate methods for material substitution for the purpose of re-engineering legacy systems that involves incomplete information about form, fit and function of replacement parts. The primary motive is to extract as much useful information about a failed legacy part as possible and use

The focus of this research is to investigate methods for material substitution for the purpose of re-engineering legacy systems that involves incomplete information about form, fit and function of replacement parts. The primary motive is to extract as much useful information about a failed legacy part as possible and use fuzzy logic rules for identifying the unknown parameter values. Machine elements can fail by any number of failure modes but the most probable failure modes based on the service condition are considered critical failure modes. Three main parameters are of key interest in identifying the critical failure mode of the part. Critical failure modes are then directly mapped to material properties. Target material property values are calculated from material property values obtained from the originally used material and from the design goals. The material database is searched for new candidate materials that satisfy the goals and constraints in manufacturing and raw stock availability. Uncertainty in the extracted data is modeled using fuzzy logic. Fuzzy member functions model the imprecise nature of data in each available parameter and rule sets characterize the imprecise dependencies between the parameters and makes decisions in identifying the unknown parameter value based on the incompleteness. A final confidence level for each material in a pool of candidate material is a direct indication of uncertainty. All the candidates satisfy the goals and constraints to varying degrees and the final selection is left to the designer's discretion. The process is automated by software that inputs incomplete data; uses fuzzy logic to extract more information and queries the material database with a constrained search for finding candidate alternatives.
ContributorsBalaji, Srinath (Author) / Shah, Jami (Thesis advisor) / Davidson, Joseph (Committee member) / Huebner, Kenneth (Committee member) / Arizona State University (Publisher)
Created2011
150321-Thumbnail Image.png
Description
Many methods of passive flow control rely on changes to surface morphology. Roughening surfaces to induce boundary layer transition to turbulence and in turn delay separation is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms of how roughness and other means of passive

Many methods of passive flow control rely on changes to surface morphology. Roughening surfaces to induce boundary layer transition to turbulence and in turn delay separation is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms of how roughness and other means of passive flow control to delay separation on bluff bodies is known, basic mechanisms are not well understood. Of particular interest for the current work is understanding the role of surface dimpling on boundary layers. A computational approach is employed and the study has two main goals. The first is to understand and advance the numerical methodology utilized for the computations. The second is to shed some light on the details of how surface dimples distort boundary layers and cause transition to turbulence. Simulations are performed of the flow over a simplified configuration: the flow of a boundary layer over a dimpled flat plate. The flow is modeled using an immersed boundary as a representation of the dimpled surface along with direct numerical simulation of the Navier-Stokes equations. The dimple geometry used is fixed and is that of a spherical depression in the flat plate with a depth-to-diameter ratio of 0.1. The dimples are arranged in staggered rows separated by spacing of the center of the bottom of the dimples by one diameter in both the spanwise and streamwise dimensions. The simulations are conducted for both two and three staggered rows of dimples. Flow variables are normalized at the inlet by the dimple depth and the Reynolds number is specified as 4000 (based on freestream velocity and inlet boundary layer thickness). First and second order statistics show the turbulent boundary layers correlate well to channel flow and flow of a zero pressure gradient flat plate boundary layers in the viscous sublayer and the buffer layer, but deviates further away from the wall. The forcing of transition to turbulence by the dimples is unlike the transition caused by a naturally transitioning flow, a small perturbation such as trip tape in experimental flows, or noise in the inlet condition for computational flows.
ContributorsGutierrez-Jensen, Jeremiah J (Author) / Squires, Kyle (Thesis advisor) / Hermann, Marcus (Committee member) / Gelb, Anne (Committee member) / Arizona State University (Publisher)
Created2011
150270-Thumbnail Image.png
Description
Thermal interface materials (TIMs) are extensively used in thermal management applications especially in the microelectronics industry. With the advancement in microprocessors design and speed, the thermal management is becoming more complex. With these advancements in microelectronics, there have been parallel advancements in thermal interface materials. Given the vast number of

Thermal interface materials (TIMs) are extensively used in thermal management applications especially in the microelectronics industry. With the advancement in microprocessors design and speed, the thermal management is becoming more complex. With these advancements in microelectronics, there have been parallel advancements in thermal interface materials. Given the vast number of available TIM types, selection of the material for each specific application is crucial. Most of the metrologies currently available on the market are designed to qualify TIMs between two perfectly flat surfaces, mimicking an ideal scenario. However, in realistic applications parallel surfaces may not be the case. In this study, a unique characterization method is proposed to address the need for TIMs characterization between non-parallel surfaces. Two different metrologies are custom-designed and built to measure the impact of tilt angle on the performance of TIMs. The first metrology, Angular TIM Tester, is based on the ASTM D5470 standard with flexibility to perform characterization of the sample under induced tilt angle of the rods. The second metrology, Bare Die Tilting Metrology, is designed to validate the performance of TIM under induced tilt angle between the bare die and the cooling solution in an "in-situ" package testing format. Several types of off-the-shelf thermal interface materials were tested and the results are outlined in the study. Data were collected using both metrologies for all selected materials. It was found that small tilt angles, up to 0.6°, have an impact on thermal resistance of all materials especially for in-situ testing. In addition, resistance change between 0° and the selected tilt angle was found to be in close agreement between the two metrologies for paste-based materials and phase-change material. However, a clear difference in the thermal performance of the tested materials was observed between the two metrologies for the gap filler materials.
ContributorsHarris, Enisa (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2011
150122-Thumbnail Image.png
Description
This thesis focuses on the continued extension, validation, and application of combined thermal-structural reduced order models for nonlinear geometric problems. The first part of the thesis focuses on the determination of the temperature distribution and structural response induced by an oscillating flux on the top surface of a flat panel.

This thesis focuses on the continued extension, validation, and application of combined thermal-structural reduced order models for nonlinear geometric problems. The first part of the thesis focuses on the determination of the temperature distribution and structural response induced by an oscillating flux on the top surface of a flat panel. This flux is introduced here as a simplified representation of the thermal effects of an oscillating shock on a panel of a supersonic/hypersonic vehicle. Accordingly, a random acoustic excitation is also considered to act on the panel and the level of the thermo-acoustic excitation is assumed to be large enough to induce a nonlinear geometric response of the panel. Both temperature distribution and structural response are determined using recently proposed reduced order models and a complete one way, thermal-structural, coupling is enforced. A steady-state analysis of the thermal problem is first carried out that is then utilized in the structural reduced order model governing equations with and without the acoustic excitation. A detailed validation of the reduced order models is carried out by comparison with a few full finite element (Nastran) computations. The computational expedience of the reduced order models allows a detailed parametric study of the response as a function of the frequency of the oscillating flux. The nature of the corresponding structural ROM equations is seen to be of a Mathieu-type with Duffing nonlinearity (originating from the nonlinear geometric effects) with external harmonic excitation (associated with the thermal moments terms on the panel). A dominant resonance is observed and explained. The second part of the thesis is focused on extending the formulation of the combined thermal-structural reduced order modeling method to include temperature dependent structural properties, more specifically of the elasticity tensor and the coefficient of thermal expansion. These properties were assumed to vary linearly with local temperature and it was found that the linear stiffness coefficients and the "thermal moment" terms then are cubic functions of the temperature generalized coordinates while the quadratic and cubic stiffness coefficients were only linear functions of these coordinates. A first validation of this reduced order modeling strategy was successfully carried out.
ContributorsMatney, Andrew (Author) / Mignolet, Marc (Thesis advisor) / Jiang, Hanqing (Committee member) / Spottswood, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150092-Thumbnail Image.png
Description
The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which

The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail.
ContributorsParthasarathy, Praveen Kumar (Author) / Adrian, Ronald (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011