Matching Items (13)
Filtering by

Clear all filters

152349-Thumbnail Image.png
Description
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.
ContributorsWang, Yuting (Author) / Artemiadis, Panagiotis (Thesis advisor) / Mignolet, Marc (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151787-Thumbnail Image.png
Description
Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation data sets, while the parameters of the decoding function are specific for each subject. In this thesis we propose a new methodology that doesn't require training and is not user-specific. The main idea is to supplement the decoding functional error with the human ability to learn inverse model of an arbitrary mapping function. We have shown that the subjects gradually learned the control strategy and their learning rates improved. We also worked on identifying an optimized control scheme that would be even more effective and easy to learn for the subjects. Optimization was done by taking into account that muscles act in synergies while performing a motion task. The low-dimensional representation of the neural activity was used to control a two-dimensional task. Results showed that in the case of reduced dimensionality mapping, the subjects were able to learn to control the device in a slower pace, however they were able to reach and retain the same level of controllability. To summarize, we were able to build an EMG-based controller for robot devices that would work for any subject, without any training or decoding function, suggesting human-embedded controllers for robotic devices.
ContributorsAntuvan, Chris Wilson (Author) / Artemiadis, Panagiotis (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151510-Thumbnail Image.png
Description
Tolerances on line profiles are used to control cross-sectional shapes of parts, such as turbine blades. A full life cycle for many mechanical devices depends (i) on a wise assignment of tolerances during design and (ii) on careful quality control of the manufacturing process to ensure adherence to the specified

Tolerances on line profiles are used to control cross-sectional shapes of parts, such as turbine blades. A full life cycle for many mechanical devices depends (i) on a wise assignment of tolerances during design and (ii) on careful quality control of the manufacturing process to ensure adherence to the specified tolerances. This thesis describes a new method for quality control of a manufacturing process by improving the method used to convert measured points on a part to a geometric entity that can be compared directly with tolerance specifications. The focus of this paper is the development of a new computational method for obtaining the least-squares fit of a set of points that have been measured with a coordinate measurement machine along a line-profile. The pseudo-inverse of a rectangular matrix is used to convert the measured points to the least-squares fit of the profile. Numerical examples are included for convex and concave line-profiles, that are formed from line- and circular arc-segments.
ContributorsSavaliya, Samir (Author) / Davidson, Joseph K. (Thesis advisor) / Shah, Jami J. (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
150828-Thumbnail Image.png
Description
Effective tactile sensing in prosthetic and robotic hands is crucial for improving the functionality of such hands and enhancing the user's experience. Thus, improving the range of tactile sensing capabilities is essential for developing versatile artificial hands. Multimodal tactile sensors called BioTacs, which include a hydrophone and a force electrode

Effective tactile sensing in prosthetic and robotic hands is crucial for improving the functionality of such hands and enhancing the user's experience. Thus, improving the range of tactile sensing capabilities is essential for developing versatile artificial hands. Multimodal tactile sensors called BioTacs, which include a hydrophone and a force electrode array, were used to understand how grip force, contact angle, object texture, and slip direction may be encoded in the sensor data. Findings show that slip induced under conditions of high contact angles and grip forces resulted in significant changes in both AC and DC pressure magnitude and rate of change in pressure. Slip induced under conditions of low contact angles and grip forces resulted in significant changes in the rate of change in electrode impedance. Slip in the distal direction of a precision grip caused significant changes in pressure magnitude and rate of change in pressure, while slip in the radial direction of the wrist caused significant changes in the rate of change in electrode impedance. A strong relationship was established between slip direction and the rate of change in ratios of electrode impedance for radial and ulnar slip relative to the wrist. Consequently, establishing multiple thresholds or establishing a multivariate model may be a useful method for detecting and characterizing slip. Detecting slip for low contact angles could be done by monitoring electrode data, while detecting slip for high contact angles could be done by monitoring pressure data. Predicting slip in the distal direction could be done by monitoring pressure data, while predicting slip in the radial and ulnar directions could be done by monitoring electrode data.
ContributorsHsia, Albert (Author) / Santos, Veronica J (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen I (Committee member) / Arizona State University (Publisher)
Created2012
187805-Thumbnail Image.png
Description
In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for exoskeletons have ranged from devices as simple spring-loaded systems to using sensors such as electromyography (EMG). Despite EMGs being very common, force sensing resistors (FSRs) can be used instead. There are multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for either medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This thesis is a continuation of my ASU Barrett honors thesis, Upper-Extremity Exoskeleton. While working on my honors thesis, I helped develop a design for an upper extremity exoskeleton based on the Wilmer orthosis design for Mayo Clinic. Building upon the design of an orthosis, for the master’s thesis, I developed an FSR control system that is designed using a Wheatstone bridge circuit that can provide a clean reliable signal as compared to the current EMG setup.
ContributorsCarlton, Bryan (Author) / Sugar, Thomas (Thesis advisor) / Aukes, Daniel (Committee member) / Hollander, Kevin (Committee member) / Arizona State University (Publisher)
Created2023
Description
Undulatory locomotion is a unique form of swimming that generates thrust through the propagation of a wave through a fish’s body. The proposed device utilizes a constrained compliant material with a single actuator to generate an undulatory motion. This paper draws inspiration from Anguilliformes and discusses the kinematics and dynamics

Undulatory locomotion is a unique form of swimming that generates thrust through the propagation of a wave through a fish’s body. The proposed device utilizes a constrained compliant material with a single actuator to generate an undulatory motion. This paper draws inspiration from Anguilliformes and discusses the kinematics and dynamics of wave propagation of an underwater robot. A variety of parameters are explored through modeling and are optimized for thrust generation to better understand the device. This paper validates the theoretical spine behavior through experimentation and provides a path forward for future development in device optimization for various applications. Previous work developed devices that utilized either paired soft actuators or multiple redundant classical actuators that resulted in a complex prototype with intricate controls. The work of this paper contrasts with prior work in that it aims to achieve undulatory motion through passive actuation from a single actively driven point which simplifies the control. Through this work, the goal is to further explore low-cost soft robotics via bistable mechanisms, continuum material properties, and simplified modeling practices.
ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis advisor) / Zhang, Wenlong (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2023
187407-Thumbnail Image.png
Description
Foldable robots have gained popularity in recent years due to their versatility and portability. However, the use of composite hinges in these systems has posed challenges in terms of manufacturing complexity and cost. Historically, single material robots were very limited due to the fact that both the link and the

Foldable robots have gained popularity in recent years due to their versatility and portability. However, the use of composite hinges in these systems has posed challenges in terms of manufacturing complexity and cost. Historically, single material robots were very limited due to the fact that both the link and the hinge are made with the same material and striking a balance with stiffness of the link and flexibility of the hinge has been very difficult. Hinges would undergo fatigue within hundreds of cycles and show non-linear wear and physical properties. This research proposes an innovative approach to simplify foldable robotics by replacing composite hinges with single material flexure hinges. The proposed hinges are manufactured using a CO2 laser cutter and are designed to enhance performance and reduce costs over previous single-layer-hinges. A mathematical model has been developed to predict the behavior of the hinges and tune them to the desired requirements. Experimental results show that the proposed hinges offer improved flexibility and durability compared to single-layer hinges, while reducing the manufacturing cost and complexity associated with multi-layer hinges. This research contributes to the advancement of foldable robotics by offering a simplified and cost-effective solution that can foster innovation in various applications.
ContributorsKanchan, Viraj (Author) / Aukes, Daniel (Thesis advisor) / Redkan, Sangram (Committee member) / Sugar, Thmas (Committee member) / Arizona State University (Publisher)
Created2023
157404-Thumbnail Image.png
Description
This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic

This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic and without the need to adjust rigid, mechanical components. The robot utilizes inflatable soft actuators with an adjustable radius which, when pressurized, can provide a radial force, effectively anchoring the device in place. Additional soft inflatable actuators translate forces along the center axis of the device which creates forward locomotion when used in conjunction with the radial actuation. Furthermore, a bio-inspired control algorithm for locomotion allows the robot to maneuver through a pipe by mimicking the peristaltic gait of an inchworm. This thesis provides an examination and evaluation of the structure and behavior of the inflatable actuators through computational modeling of the material and design, as well as the experimental data of the forces and displacements generated by the actuators. The theoretical results are contrasted with/against experimental data utilizing a physical prototype of the soft robot. The design is anticipated to enable compliant robots to conform to the space offered to them and overcome occlusions from accumulated solids found in pipes. The intent of the device is to be used for inspecting existing pipelines owned and operated by Salt River Project, a Phoenix-area water and electricity utility provider.
ContributorsAdams, Wade Silas (Author) / Aukes, Daniel (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2019
156672-Thumbnail Image.png
Description
Existing robotic excavation research has been primarily focused on lunar mining missions or simple traffic control in confined tunnels, however little work attempts to bring collective excavation into the realm of human infrastructure. This thesis explores a decentralized approach to excavation processes, where traffic laws are borrowed from swarms of

Existing robotic excavation research has been primarily focused on lunar mining missions or simple traffic control in confined tunnels, however little work attempts to bring collective excavation into the realm of human infrastructure. This thesis explores a decentralized approach to excavation processes, where traffic laws are borrowed from swarms of fire ants (Solenopsis invicta) or termites (Coptotermes formosanus) to create decision rules for a swarm of robots working together and organizing effectively to create a desired final excavated pattern.

First, a literature review of the behavioral rules of different types of insect colonies and the resulting structural patterns over the course of excavation was conducted. After identifying pertinent excavation laws, three different finite state machines were generated that relate to construction, search and rescue operations, and extraterrestrial exploration. After analyzing these finite state machines, it became apparent that they all shared a common controller. Then, agent-based NetLogo software was used to simulate a swarm of agents that run this controller, and a model for excavating behaviors and patterns was fit to the simulation data. This model predicts the tunnel shapes formed in the simulation as a function of the swarm size and a time delay, called the critical waiting period, in one of the state transitions. Thus, by controlling the individual agents' behavior, it was possible to control the structural outcomes of collective excavation in simulation.

To create an experimental testbed that could be used to physically implement the controller, a small foldable robotic platform was developed, and it's capabilities were tested in granular media. In order to characterize the granular media, force experiments were conducted and parameters were measured for resistive forces during an excavation cycle. The final experiment verified the robot's ability to engage in excavation and deposition, and to determine whether or not to begin the critical waiting period. This testbed can be expanded with multiple robots to conduct small-scale experiments on collective excavation, such as further exploring the effects of the critical waiting period on the resulting excavation pattern. In addition, investigating other factors like tuning digging efficiency or deposition proximity could help to transition the proposed bio-inspired swarm excavation controllers to implementation in real-world applications.
ContributorsHaggerty, Zz Mae (Author) / Berman, Spring M (Thesis advisor) / Aukes, Daniel (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2018
157469-Thumbnail Image.png
Description
What if there is a way to integrate prosthetics seamlessly with the human body and robots could help improve the lives of children with disabilities? With physical human-robot interaction being seen in multiple aspects of life, including industry, medical, and social, how these robots are interacting with human becomes

What if there is a way to integrate prosthetics seamlessly with the human body and robots could help improve the lives of children with disabilities? With physical human-robot interaction being seen in multiple aspects of life, including industry, medical, and social, how these robots are interacting with human becomes even more important. Therefore, how smoothly the robot can interact with a person will determine how safe and efficient this relationship will be. This thesis investigates adaptive control method that allows a robot to adapt to the human's actions based on the interaction force. Allowing the relationship to become more effortless and less strained when the robot has a different goal than the human, as seen in Game Theory, using multiple techniques that adapts the system. Few applications this could be used for include robots in physical therapy, manufacturing robots that can adapt to a changing environment, and robots teaching people something new like dancing or learning how to walk after surgery.

The experience gained is the understanding of how a cost function of a system works, including the tracking error, speed of the system, the robot’s effort, and the human’s effort. Also, this two-agent system, results into a two-agent adaptive impedance model with an input for each agent of the system. This leads to a nontraditional linear quadratic regulator (LQR), that must be separated and then added together. Thus, creating a traditional LQR. This new experience can be used in the future to help build better safety protocols on manufacturing robots. In the future the knowledge learned from this research could be used to develop technologies for a robot to allow to adapt to help counteract human error.
ContributorsBell, Rebecca C (Author) / Zhang, Wenlong (Thesis advisor) / Chiou, Erin (Committee member) / Aukes, Daniel (Committee member) / Arizona State University (Publisher)
Created2019