Matching Items (4)
Filtering by

Clear all filters

135651-Thumbnail Image.png
Description
Honey bees (Apis mellifera) are responsible for pollinating nearly 80\% of all pollinated plants, meaning humans depend on honey bees to pollinate many staple crops. The success or failure of a colony is vital to global food production. There are various complex factors that can contribute to a colony's failure,

Honey bees (Apis mellifera) are responsible for pollinating nearly 80\% of all pollinated plants, meaning humans depend on honey bees to pollinate many staple crops. The success or failure of a colony is vital to global food production. There are various complex factors that can contribute to a colony's failure, including pesticides. Neonicotoids are a popular pesticide that have been used in recent times. In this study we concern ourselves with pesticides and its impact on honey bee colonies. Previous investigations that we draw significant inspiration from include Khoury et Al's \emph{A Quantitative Model of Honey Bee Colony Population Dynamics}, Henry et Al's \emph{A Common Pesticide Decreases Foraging Success and Survival in Honey Bees}, and Brown's \emph{ Mathematical Models of Honey Bee Populations: Rapid Population Decline}. In this project we extend a mathematical model to investigate the impact of pesticides on a honey bee colony, with birth rates and death rates being dependent on pesticides, and we see how these death rates influence the growth of a colony. Our studies have found an equilibrium point that depends on pesticides. Trace amounts of pesticide are detrimental as they not only affect death rates, but birth rates as well.
ContributorsSalinas, Armando (Author) / Vaz, Paul (Thesis director) / Jones, Donald (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133062-Thumbnail Image.png
Description
Through the months September-November of 2017 a study was conducted to determine if bees prefer the sunflower, Helianthus annuus, native to Arizona, or a cultivar Helianthus sunflower in an urban environment. The study was executed in a small, controlled urban environment on Arizona State University West campus. Seven identified bee

Through the months September-November of 2017 a study was conducted to determine if bees prefer the sunflower, Helianthus annuus, native to Arizona, or a cultivar Helianthus sunflower in an urban environment. The study was executed in a small, controlled urban environment on Arizona State University West campus. Seven identified bee species and forty-nine specimens were collected, of the forty-nine specimens, two bees were reported on the Helianthus cultivar supporting native floral host preferences of native species. Variables such as nectar, pollen, floral color, and floral height were not measured, however, when the floral host genus was maintained wild bees visited the native Helianthus host significantly more yielding a supportive two-tailed p-value of 2.97x10-5. Three trends were identified in correlation with the experiment: 1) Bees foraged on native Helianthus annuus over the Helianthus cultivar, 2) Generalist species were more abundant than specialists on the Helianthus annuus, 3) Honey bees (Apis mellifera) were the most abundant species present. While not considered a trend, low floral diversity and abundance may explain the low diversity of bee species observed on the Helianthus. Floral host and pollinator desynchronization may also have affected bee diversity and abundance. Analysis of bee abundance and diversity support that wild bees may prefer native floral hosts over cultivar floral hosts when the floral genus, temperature, and time was controlled for in an urban environment.
ContributorsDunham, Jocelen Michaela (Author) / Foltz-Sweat, Jennifer (Thesis director) / Sweat, Ken (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134344-Thumbnail Image.png
Description
Bee communities form the keystone of many ecosystems through their pollination services. They are dynamic and often subject to significant changes due to several different factors such as climate, urban development, and other anthropogenic disturbances. As a result, the world has been experiencing a decline in bee diversity and abundance,

Bee communities form the keystone of many ecosystems through their pollination services. They are dynamic and often subject to significant changes due to several different factors such as climate, urban development, and other anthropogenic disturbances. As a result, the world has been experiencing a decline in bee diversity and abundance, which can have detrimental effects in the ecosystems they inhabit. One of the largest factors that impacts bees in today's world is the rapid urbanization of our planet, and it impacts the bee community in mixed ways. Not very much is understood about the bee communities that exist in urban habitats, but as urbanization is inevitably going to continue, knowledge on bee communities will need to strengthen. This study aims to determine the levels of variance in bee communities, considering multiple variables that bee communities can differ in. The following three questions are posed: do bee communities that are spatially separated differ significantly? Do bee communities that are separated by seasons differ significantly? Do bee communities that are separated temporally (by year, interannually) differ significantly? The procedure to conduct this experiment consists of netting and trapping bees at two sites at various times using the same methods. The data is then statistically analyzed for differences in abundance, richness, diversity, and species composition. After performing the various statistical analyses, it has been discovered that bee communities that are spatially separated, seasonally separated, or interannually separated do not differ significantly when it comes to abundance and richness. Spatially separated bee communities and interannually separated bee communities show a moderate level of dissimilarity in their species composition, while seasonally separated bee communities show a greater level of dissimilarity in species composition. Finally, seasonally separated bee communities demonstrate the greatest disparity of bee diversity, while interannually separated bee communities show the least disparity of bee diversity. This study was conducted over the time span of two years, and while the levels of variance of an urban area between these variables were determined, further variance studies of greater length or larger areas should be conducted to increase the currently limited knowledge of bee communities in urban areas. Additional studies on precipitation amounts and their effects on bee communities should be conducted, and studies from other regions should be taken into consideration while attempting to understand what is likely the most environmentally significant group of insects.
ContributorsPhan, James Thien (Author) / Sweat, Ken (Thesis director) / Foltz-Sweat, Jennifer (Committee member) / School of Music (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
161537-Thumbnail Image.png
Description
Learning loss occurs during academic breaks, and this can be detrimental to student success especially in sequential classes like Arizona State University’s Engineering Calculus sequence in which retention of the topics taught in a prior class is expected. The Keeping in School Shape Program (KiSS) is designed as a cost

Learning loss occurs during academic breaks, and this can be detrimental to student success especially in sequential classes like Arizona State University’s Engineering Calculus sequence in which retention of the topics taught in a prior class is expected. The Keeping in School Shape Program (KiSS) is designed as a cost effective, efficient, and accessible way of addressing this problem. The KiSS program uses push technology to give students a way to regularly review material over academic breaks while also fostering a growth mindset.Every day, during an academic break, students are sent a link via text message or email to access a multiple-choice daily review problem which represents material from a previous course that is requisite for success in an upcoming course. Before solving the daily problem, students use a 5-point scale to indicate how confident they are that they can solve the problem. Students then complete the daily review problem and have a variety of resources to support them as they do so, as well as options after they complete it. Students are able to view a hint and try a problem again, view a solution, and attempt a challenge problem. On Tuesdays (aka 2’s-Days) students are given the opportunity to complete either an additional daily review problem or an additional challenge problem, and on Sundays (aka Trivia Days) students can decide between completing only a mathematics trivia question or trivia along with the daily review problem. There is much to be learned from each individual student who participates in the KiSS program. Three surveys were conducted during the Winter Break 2020 KiSS program that gave insight into students’ experience in the KiSS program along with their personal background and mindset regarding mathematics. Ten students responded to all three of these surveys. This thesis will present a case study for each of these ten students based on their data from program participation and survey responses. Conclusions will be drawn regarding ways in which the KiSS program is helping students and ways in which it can be improved to help students be better prepared for their upcoming studies.
ContributorsVandenberg, Jana Elle (Author) / Van de Sande, Carla (Thesis advisor) / Jones, Donald (Committee member) / Milner, Fabio (Committee member) / Verdín, Dina (Committee member) / Arizona State University (Publisher)
Created2021