Matching Items (11)
Filtering by

Clear all filters

151279-Thumbnail Image.png
Description
The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes

The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the time of formation. The scarcity of angrite samples made it difficult to conduct comprehensive investigations into the formation history of this unique meteorite group. However, a dramatic increase in the number of angrites recovered in recent years presents the opportunity to expand our understanding of their petrogenesis, as well as further refine our knowledge of the initial isotopic abundances in the early Solar System as recorded by their isotopic systematics. Using a combination of geochemical tools (radiogenic isotope chronometers and trace element chemistry), I have investigated the petrogenetic history of a group of four angrites that sample a range of formation conditions (cooling histories) and crystallization ages. Through isotope ratio measurements, I have examined a comprehensive set of long- and short-lived radiogenic isotope systems (26Al-26Mg, 87Rb-87Sr, 146Sm-142Nd, 147Sm-143Nd, and 176Lu-176Hf) within these four angrites. The results of these measurements provide information regarding crystallization ages, as well as revised estimates for the initial isotopic abundances of several key elements in the early Solar System. The determination of trace element concentrations in individual mineral phases, as well as bulk rock samples, provides important constraints on magmatic processes occurring on the angrite parent body. The measured trace element abundances are used to estimate the composition of the parent melts of individual angrites, examine crystallization conditions, and investigate possible geochemical affinities between various angrites. The new geochemical and isotopic measurements presented here significantly expand our understanding of the geochemical conditions found on the angrite parent body and the environment in which these meteorites formed.
ContributorsSanborn, Matthew E (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda (Committee member) / Williams, Lynda (Committee member) / Carlson, Richard (Committee member) / Arizona State University (Publisher)
Created2012
150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
151082-Thumbnail Image.png
Description
This dissertation examines two topics of emerging interest in the field of organic geochemistry. The topic of the first portion of the dissertation is cold organic geochemistry on Saturn's moon Titan. Titan has an atmosphere and surface that are rich in organic compounds. Liquid hydrocarbons exist on the surface, most

This dissertation examines two topics of emerging interest in the field of organic geochemistry. The topic of the first portion of the dissertation is cold organic geochemistry on Saturn's moon Titan. Titan has an atmosphere and surface that are rich in organic compounds. Liquid hydrocarbons exist on the surface, most famously as lakes. Photochemical reactions produce solid organics in Titan's atmosphere, and these materials settle onto the surface. At the surface, liquids can interact with solids, and geochemical processes can occur. To better understand these processes, I developed a thermodynamic model that can be used to calculate the solubilities of gases and solids in liquid hydrocarbons at cryogenic temperatures. The model was parameterized using experimental data, and provides a good fit to the data. Application of the model to Titan reveals that the equilibrium composition of surface liquids depends on the abundance of methane in the local atmosphere. The model also indicates that solid acetylene should be quite soluble in surface liquids, which implies that acetylene-rich rocks should be susceptible to chemical erosion, and acetylene evaporites may form on Titan. In the latter half of this dissertation, I focus on hot organic geochemistry below the surface of the Earth. Organic compounds are common in sediments. Burial of sediments leads to changes in physical and chemical conditions, promoting organic reactions. An important organic reaction in subsurface environments is decarboxylation, which generates hydrocarbons and carbon dioxide from simple organic acids. Fundamental knowledge about decarboxylation is required to better understand how the organic and inorganic compositions of sediments evolve in response to changing geochemical conditions. I performed experiments with the model compound phenylacetic acid to obtain information about mechanisms of decarboxylation in hydrothermal fluids. Patterns in rates of decarboxylation of substituted phenylacetic acids point to a mechanism that proceeds through a ring-protonated zwitterion of phenylacetic acid. In contrast, substituted sodium phenylacetates exhibit a different kinetic pattern, one that is consistent with the formation of the benzyl anion as an intermediate. Results from experiments with added hydrochloric acid or sodium hydroxide, and deuterated water agree with these interpretations. Thus, speciation dictates mechanism of decarboxylation.
ContributorsGlein, Christopher R (Author) / Shock, Everett L (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Zolotov, Mikhail Y (Committee member) / Williams, Lynda B (Committee member) / Gould, Ian R (Committee member) / Arizona State University (Publisher)
Created2012
156872-Thumbnail Image.png
Description
Variations of 238U/235U in sedimentary carbonate rocks are being explored as a tool for reconstructing oceanic anoxia through time. However, the fidelity of this novel paleoredox proxy relies on characterization of uranium isotope geochemistry via laboratory experimental studies and field work in modern analog environmental settings. This dissertation systematically examines

Variations of 238U/235U in sedimentary carbonate rocks are being explored as a tool for reconstructing oceanic anoxia through time. However, the fidelity of this novel paleoredox proxy relies on characterization of uranium isotope geochemistry via laboratory experimental studies and field work in modern analog environmental settings. This dissertation systematically examines the fidelity of 238U/235U in sedimentary carbonate rocks as a paleoredox proxy focusing on the following issues: (1) U isotope fractionation during U incorporation into primary abiotic and biogenic calcium carbonates; (2) diagenetic effects on U isotope fractionation in modern shallow-water carbonate sediments; (3) the effects of anoxic depositional environments on 238U/235U in carbonate sediments.

Variable and positive shifts of 238U/235U were observed during U uptake by primary abiotic and biotic calcium carbonates, carbonate diagenesis, and anoxic deposition of carbonates. Previous CaCO3 coprecipitation experiments demonstrated a small but measurable U isotope fractionation of ~0.10 ‰ during U(VI) incorporation into abiotic calcium carbonates, with 238U preferentially incorporated into the precipitates (Chen et al., 2016). The magnitude of U isotope fractionation depended on aqueous U speciation, which is controlled by water chemistry, including pH, ionic strength, carbonate, and Ca2+ and Mg2+ concentrations. Based on this speciation-dependent isotope fractionation model, the estimated U isotope fractionation in abiotic calcium carbonates induced by secular changes in seawater chemistry through the Phanerozoic was predicted to be 0.11–0.23 ‰. A smaller and variable U isotope fractionation (0–0.09 ‰) was observed in primary biogenic calcium carbonates, which fractionated U isotopes in the same direction as abiotic calcium carbonates. Early diagenesis of modern shallow-water carbonate sediments from the Bahamas shifted δ238U values to be 0.270.14 ‰ (1 SD) higher than contemporaneous seawater. Also, carbonate sediments deposited under anoxic conditions in a redox-stratified lake—Fayetteville Green Lake, New York, USA— exhibited elevated δ238U values by 0.160.12 ‰ (1 SD) relative to surface water carbonates with significant enrichments in U.

The significant U isotope fractionation observed in these studies suggests the need to correct for the U isotopic offset between carbonate sediments and coeval seawater when using δ238U variations in ancient carbonate rocks to reconstruct changes in ocean anoxia. The U isotope fractionation in abiotic and biogenic primary carbonate precipitates, during carbonate diagenesis, and under anoxic depositional environments provide a preliminary guideline to calibrate 238U/235U in sedimentary carbonate rocks as a paleoredox proxy.
ContributorsChen, Xinming (Author) / Anbar, Ariel D (Thesis advisor) / Williams, Lynda B (Committee member) / Sharp, Thomas (Committee member) / Hervig, Richard (Committee member) / Romaniello, Stephen (Committee member) / Arizona State University (Publisher)
Created2018
153710-Thumbnail Image.png
Description
Chemical and physical interactions of flowing ice and rock have inexorably shaped planetary surfaces. Weathering in glacial environments is a significant link in biogeochemical cycles – carbon and strontium – on Earth, and may have once played an important role in altering Mars’ surface. Despite growing recognition of the importance

Chemical and physical interactions of flowing ice and rock have inexorably shaped planetary surfaces. Weathering in glacial environments is a significant link in biogeochemical cycles – carbon and strontium – on Earth, and may have once played an important role in altering Mars’ surface. Despite growing recognition of the importance of low-temperature chemical weathering, these processes are still not well understood. Debris-coated glaciers are also present on Mars, emphasizing the need to study ice-related processes in the evolution of planetary surfaces. During Earth’s history, subglacial environments are thought to have sheltered communities of microorganisms from extreme climate variations. On Amazonian Mars, glaciers such as lobate debris aprons (LDA) could have hosted chemolithotrophic communities, making Mars’ present glaciers candidates for life preservation. This study characterizes glacial processes on both Earth and Mars.

Chemical weathering at Robertson Glacier, a small alpine glacier in the Canadian Rocky Mountains, is examined with a multidisciplinary approach. The relative proportions of differing dissolution reactions at various stages in the glacial system are empirically determined using aqueous geochemistry. Synthesis of laboratory and orbital thermal infrared spectroscopy allows identification of dissolution rinds on hand samples and characterization of carbonate dissolution signals at orbital scales, while chemical and morphological evidence for thin, discontinuous weathering rinds at microscales are evident from electron microscopy. Subglacial dissolution rates are found to outpace those of the proglacial till plain; biologically-mediated pyrite oxidation drives the bulk of this acidic weathering.

Second, the area-elevation relationship, or hypsometry, of LDA in the midlatitudes of Mars is characterized. These glaciers are believed to have formed ~500 Ma during a climate excursion. Hypsometric measurements of these debris-covered glaciers enable insight into past flow regimes and drive predictions about past climate scenarios. The LDA in this study fall into three major groups, strongly dependent on basal elevation, implying regional and climatic controls on ice formation and flow.

I show that biologically-mediated mineral reactions drive high subglacial dissolution rates, such that variations within the valley can be detected with remote sensing techniques. In future work, these insights can be applied to examining Mars’ glacial regions for signs of chemical alteration and biosignatures.
ContributorsRutledge, Alicia Marie (Author) / Christensen, Philip R. (Thesis advisor) / Shock, Everett (Committee member) / Clarke, Amanda (Committee member) / Sharp, Thomas (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2015
154506-Thumbnail Image.png
Description
The collision between the Indian and Eurasian tectonic plates marked the onset of the rise of the Himalayan-Tibetan orogen, but also brought about profound changes to the Earth's oceans and climate. The exact sequence of events that occurred during this collision is poorly understood, leading to a wide range of

The collision between the Indian and Eurasian tectonic plates marked the onset of the rise of the Himalayan-Tibetan orogen, but also brought about profound changes to the Earth's oceans and climate. The exact sequence of events that occurred during this collision is poorly understood, leading to a wide range of estimates of its age. The Indus and Yarlung sutures are generally considered to represent the final collision between India and Eurasia, and together form a mostly continuous belt that can be traced over 2000 km along strike. In the western portions of the orogen the Karakoram Fault introduces a key complexity to the study of timing of collision by offsetting the Indus and Yarlung sutures. Recent work has used the complexities introduced by the Karakoram Fault to suggest that the more northerly Shyok suture, not the Indus suture, represents the India-Eurasia collision zone. Estimates for timing of the India-Eurasia collision fall into one of three groups: 40-34 Ma, 55-50 Ma, and 66-60 Ma. Attempts to reconcile these models have thus far been unsuccessful. In order to provide additional data that might further clarify the timing and location of collision, studies have been performed along the Shyok suture in India and along the Yarlung suture in Tibet at Sangsang. A study along the Shyok suture argues that the suture formed between 92-85 Ma. This timing precludes an interpretation that the Shyok suture marks the location of the India-Eurasia collision. A second study demonstrates the utility of two new geochronometers, (U-Th)/Pb joaquinite and 40Ar/39Ar neptunite, that play an important role in unraveling the tectonic history of the Yarlung suture. A third study is an investigation of the structure and geochronology of the Sangsang ophiolite complex. Here, multiple (U-Th)/Pb and 40Ar/39Ar systems record magmatism and metamorphism spanning ca. 125-52 Ma. By tying these chronometers to tectonic process, a history is reconstructed of the southern margin of Tibet that includes Early Cretaceous to Late Cretaceous forearc rifting associated with mid ocean ridge subduction, Paleocene accretionary wedge uplift and erosion, and finally Eocene metasomatism and collision.
ContributorsBorneman, Nathaniel (Author) / Hodges, Kip (Thesis advisor) / Reynolds, Stephen (Committee member) / Whipple, Kelin (Committee member) / Sharp, Thomas (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2016
155045-Thumbnail Image.png
Description
Hydrothermal environments are important locales for carbon cycling on Earth and elsewhere in the Universe. Below its maximum temperature (~73 °C), microbial photosynthesis drives primary productivity in terrestrial hydrothermal ecosystems, which is thought to be performed by bacterial phototrophs in alkaline systems and eukaryotic algae in acidic systems, yet has

Hydrothermal environments are important locales for carbon cycling on Earth and elsewhere in the Universe. Below its maximum temperature (~73 °C), microbial photosynthesis drives primary productivity in terrestrial hydrothermal ecosystems, which is thought to be performed by bacterial phototrophs in alkaline systems and eukaryotic algae in acidic systems, yet has received little attention at pH values intermediate to these extremes. Sequencing of 16S and 18S rRNA genes was performed at 12 hot springs with pH values 2.9-5.6 and revealed that cyanobacteria affiliated with the genus Chlorogloeopsis and algae of the order Cyanidiales coexisted at 10 of the sites. Cyanobacteria were present at pH values as low as 2.9, which challenges the paradigm of cyanobacteria being excluded below pH 4. Presence of the carotenoid β-cryptoxanthin in only 2 sites and quantitative PCR data suggest that algae were inactive at many of the sites when sampled. Spatial, but perhaps not temporal, overlap in the habitat ranges of bacterial and eukaryal microbial phototrophs indicates that the notion of a sharp transition between these lineages with respect to pH is untenable.

In sedimentary basins, biosphere-derived organic carbon is subjected to abiotic transformations under hydrothermal conditions. Benzaldehyde was experimentally evaluated as a model to assess the chemistry of aldehydes under these conditions. It was first demonstrated that gold, a traditional vessel material for hydrothermal experiments, caused catalysis of benzaldehyde degradation. Experiments in silica tubes were performed at 250, 300, and 350 °C yielding time-dependent data at several starting concentrations, which confirmed second-order kinetics. Therefore, disproportionation was expected as a major reaction pathway, but unequal yields of benzoic acid and benzyl alcohol were inconsistent with that mechanism. Consideration of other products led to development of a putative reaction scheme and the time dependencies of these products were subjected to kinetic modeling. The model was able to reproduce the observed yields of benzoic acid and benzyl alcohol, indicating that secondary reactions were responsible for the observed ratios of these products. Aldehyde disproportionation could be an unappreciated step in the formation of carboxylic acids, which along with hydrocarbons are the most common organic compounds present in natural systems.
ContributorsFecteau, Kristopher Michael, 1986- (Author) / Shock, Everett L (Thesis advisor) / Gould, Ian R (Committee member) / Hartnett, Hilairy E (Committee member) / Arizona State University (Publisher)
Created2016
153344-Thumbnail Image.png
Description
Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based on electrochemical trapping of carbon dioxide using pyridine and derivatives. Optimization of this process requires a detailed understanding of the mechanisms of the reactions of reduced pyridines with carbon dioxide, which are not currently well known. This thesis describes a detailed mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion of bipyridine as a model pyridine derivative, formed by one-electron reduction, with particular emphasis on the reactions with carbon dioxide. A time-resolved spectroscopic method was used to characterize the key intermediates and determine the kinetics of the reactions of the radical anion and its protonated radical form. Using a pulsed nanosecond laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which allows fast reactions to be monitored in real time. The bipyridine radical anion was found to be a very powerful one-electron donor, Bronsted base and nucleophile. It reacts by addition to the C=O bonds of ketones with a bimolecular rate constant around 1* 107 M-1 s-1. These are among the fastest nucleophilic additions that have been reported in literature. Temperature dependence studies demonstrate very low activation energies and large Arrhenius pre-exponential parameters, consistent with very high reactivity. The kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, where the radical anion acts as a nucleophile, are also characterized by large bimolecular rate constants in the range ca. 106 - 107 M-1 s-1. The pKa of the bipyridine radical anion was measured using a kinetic method and analysis of the data using a Marcus theory model for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in DMSO. The reorganization energy for the proton transfer reaction was found to be 70±5 kJ/mol. The bipyridine radical anion was found to react very rapidly with carbon dioxide, with a bimolecular rate constant of 1* 108 M-1 s-1 and a small activation energy, whereas the protonated radical reacted with carbon dioxide with a rate constant that was too small to measure. The kinetic and thermodynamic data obtained in this work can be used to understand the mechanisms of the reactions of pyridines with carbon dioxide under reducing conditions.
ContributorsRanjan, Rajeev (Author) / Gould, Ian R (Thesis advisor) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeff (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2015
153010-Thumbnail Image.png
Description
The hydrothermal chemistry of organic compounds influences many critical geological processes, including the formation of oil and gas reservoirs, the degradation and transport of organic matter in sedimentary basins, metabolic cycles in the deep subsurface biosphere, and possibly prebiotic organic synthesis related to the origin of life. In most

The hydrothermal chemistry of organic compounds influences many critical geological processes, including the formation of oil and gas reservoirs, the degradation and transport of organic matter in sedimentary basins, metabolic cycles in the deep subsurface biosphere, and possibly prebiotic organic synthesis related to the origin of life. In most previous studies of hydrothermal organic reactions the emphasis has been mainly on determining reaction product distributions, studies that provide detailed mechanistic information or direct evidence for specific reaction intermediates are rare. To develop a better understanding, I performed hydrothermal experiments with model ketone compound dibenzylketone (DBK), which serves as a quite useful tool to probe the bond breaking and forming processes in hydrothermal geochemical transformations. A careful study of reaction kinetics and products of DBK in Chapter 2 of this dissertation reveals reversible and irreversible reaction pathways, and provides evidence for competing ionic and radical reaction mechanisms. The majority of the observed products result from homolytic carbon-carbon and carbon-hydrogen bond cleavage and secondary coupling reactions of the benzyl and related radical intermediates.

In the third chapter of the dissertation, a novel hydrothermal photochemical method is studied, which enabled in situ independent generation of the relevant radicals and effectively separated the radical and ionic reactions that occur simultaneously in pure thermal reactions. In the following chapter, I focus on the role of minerals on ketone hydrothermal reactions. Minerals such as quartz and corundum have no detectable effect on DBK, whereas magnetite, hematite, and troilite all increase ketone reactivity to various extents. The influence of these iron-bearing minerals can be attributed to the mineral surface catalysis or the solution chemistry change that is presumably caused by dissolved inorganic species from minerals. In addition, some new discoveries on strong oxidizing effect of copper (II) ion under hydrothermal conditions are described in the latter chapter of the dissertation, where examples of clean and rapid reactions that converted alcohols to aldehyde and aldehydes to carboxylic acids are included.
ContributorsYang, Ziming (Author) / Shock, Everett L (Thesis advisor) / Gould, Ian R (Committee member) / Wolf, George H. (Committee member) / Arizona State University (Publisher)
Created2014
156308-Thumbnail Image.png
Description
Organic reactions in natural hydrothermal settings have relevance toward the deep carbon cycle, petroleum formation, the ecology of deep microbial communities, and potentially the origin of life. Many reaction pathways involving organic compounds under geochemically relevant hydrothermal conditions have now been characterized, but their mechanisms, in particular those involving

Organic reactions in natural hydrothermal settings have relevance toward the deep carbon cycle, petroleum formation, the ecology of deep microbial communities, and potentially the origin of life. Many reaction pathways involving organic compounds under geochemically relevant hydrothermal conditions have now been characterized, but their mechanisms, in particular those involving mineral surface catalysis, are largely unknown. The overall goal of this work is to describe these mechanisms so that predictive models of reactivity can be developed and so that applications of these reactions beyond geochemistry can be explored. The focus of this dissertation is the mechanisms of hydrothermal dehydration and catalytic hydrogenation reactions. Kinetic and structure/activity relationships show that elimination occurs mainly by the E1 mechanism for simple alcohols via homogeneous catalysis. Stereochemical probes show that hydrogenation on nickel occurs on the metal surface. By combining dehydration with and catalytic reduction, effective deoxygenation of organic structures with various functional groups such as alkenes, polyols, ketones, and carboxylic acids can be accomplished under hydrothermal conditions, using either nickel or copper-zinc alloy. These geomimetic reactions can potentially be used in biomass reduction to generate useful fuels and other high value chemicals. Through the use of earth-abundant metal catalysts, and water as the solvent, the reactions presented in this dissertation are a green alternative to current biomass deoxygenation/reduction methods, which often use exotic, rare-metal catalysts, and organic solvents.
ContributorsBockisch, Christiana (Author) / Gould, Ian R (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Shock, Everett L (Committee member) / Arizona State University (Publisher)
Created2018