Matching Items (26)
Filtering by

Clear all filters

153344-Thumbnail Image.png
Description
Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based on electrochemical trapping of carbon dioxide using pyridine and derivatives. Optimization of this process requires a detailed understanding of the mechanisms of the reactions of reduced pyridines with carbon dioxide, which are not currently well known. This thesis describes a detailed mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion of bipyridine as a model pyridine derivative, formed by one-electron reduction, with particular emphasis on the reactions with carbon dioxide. A time-resolved spectroscopic method was used to characterize the key intermediates and determine the kinetics of the reactions of the radical anion and its protonated radical form. Using a pulsed nanosecond laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which allows fast reactions to be monitored in real time. The bipyridine radical anion was found to be a very powerful one-electron donor, Bronsted base and nucleophile. It reacts by addition to the C=O bonds of ketones with a bimolecular rate constant around 1* 107 M-1 s-1. These are among the fastest nucleophilic additions that have been reported in literature. Temperature dependence studies demonstrate very low activation energies and large Arrhenius pre-exponential parameters, consistent with very high reactivity. The kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, where the radical anion acts as a nucleophile, are also characterized by large bimolecular rate constants in the range ca. 106 - 107 M-1 s-1. The pKa of the bipyridine radical anion was measured using a kinetic method and analysis of the data using a Marcus theory model for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in DMSO. The reorganization energy for the proton transfer reaction was found to be 70±5 kJ/mol. The bipyridine radical anion was found to react very rapidly with carbon dioxide, with a bimolecular rate constant of 1* 108 M-1 s-1 and a small activation energy, whereas the protonated radical reacted with carbon dioxide with a rate constant that was too small to measure. The kinetic and thermodynamic data obtained in this work can be used to understand the mechanisms of the reactions of pyridines with carbon dioxide under reducing conditions.
ContributorsRanjan, Rajeev (Author) / Gould, Ian R (Thesis advisor) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeff (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2015
161214-Thumbnail Image.png
Description

Sulfur oxidation is a process that is seen a wide variety of places. One particular place is Yellowstone national park where an abundance of hot springs are present. These acidic and hot places are prime locations for sulfur oxidation to occur. At a very basic level this is thought of

Sulfur oxidation is a process that is seen a wide variety of places. One particular place is Yellowstone national park where an abundance of hot springs are present. These acidic and hot places are prime locations for sulfur oxidation to occur. At a very basic level this is thought of as Sulfur, oxygen, and water forming sulfate and hydrogen. Many other reactions occur when an organism performs these processes, and many enzymes are used for this. This paper aimed to create, balance, and analyze the reactions involved in the paper Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus spp. (Wang et al., 2019) Once these reactions were balanced thermodynamic properties were found to evaluate the Gibbs Free Energy of these reactions. This allowed for a unique energy-based view of how this web of reactions relate to each other.

ContributorsMolina, Johnathan (Author) / Shock, Everett (Thesis director) / Weeks, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2021-12
147698-Thumbnail Image.png
Description

MAX phases are layered hexagonal early transition metal carbides, sometimes nitrides, where M is an early transition metal, A is an A group element, most prominently groups 13 or 14, and X is either carbon or nitrogen.1 They are gaining a lot of attention because of their unusual properties. Particularly,

MAX phases are layered hexagonal early transition metal carbides, sometimes nitrides, where M is an early transition metal, A is an A group element, most prominently groups 13 or 14, and X is either carbon or nitrogen.1 They are gaining a lot of attention because of their unusual properties. Particularly, their hardness, chemical stability at room temperature, and high melting points. These properties provide a material that is viable for a wide range of demanding applications.2,3 MAX phases display a combination of both ceramic and metallic characteristics. Furthermore, they also serve as a precursor for two-dimensional MXenes.4,5<br/>Generally, bulk synthesis of MAX phases is done through traditional solid state synthesis techniques. For example, three solid state synthesis techniques include solid state method, hot pressing and arc melting and annealing. During solid state method, the powder precursors are preheated between 350 and 400°C, allowing for decomposition of starting reagents and removal of volatile products leaving only the oxides. At this point the germination phase has completed, and the crystal growth phase begins. Under the effect of a concentration gradient and very high temperatures, cations migrate, forming well-ordered layers. Slow cooling rates are used in order to ensure crystallinity of the product.6 The second method, hot pressing, involves the mixing of powder precursors thoroughly and then cold pressed into a green body – a ceramic body powder pre-sintering. They are then heated under vacuum and often high pressure in order to form the product. Two variants of hot-pressing exits: reactive hot pressing, where the pressure during the reaction will vary throughout the reaction, and isostatic hot pressing, where the pressure is held constant throughout the entire reaction.7 Another solid-state technique is arc melting and annealing. During arc melting, alternating current is applied to the electrode inside an inert reactor, which is arranged as to generate an arc discharge. The heat produced by arcing causes rapid melting of the samples.8 While these methods are most common, they are not always viable due to the specialized equipment required in order to achieve the high temperature and pressure conditions. Furthermore, these specific techniques don’t allow for high control over particle size and morphology. <br/>Because of this, alternative, non-conventional synthesis techniques have been developed involving more readily available tube furnaces and microwaves, which lack the extreme pressures instead opting for ambient conditions.9 Sol-gel techniques have been developed by the group of Christina Birkel, and have successfully produced MAX phases through calcination of homogeneous citric acid-based gel-precursors. Some advantages of using these gel-precursors include shorter diffusion paths, and faster mass transport, thus, resulting in lower reaction temperatures and shorter reaction times. Ultimately, this allows for control over particle morphology and size.10<br/>The focus of this work is to discover optimal synthesis conditions to create spherical Cr2GaC. Spherical MAX phases have been briefly explored in existing literature using polymer-based hollow microsphere templates.10 These polymer microspheres have been used to synthesize spherical metal oxides. This is achieved by heating the metal oxide precursors which adhere to the spheres, then by thermal treatment, the template is then removed.11 <br/>Two different microsphere templates will be explored to study the advantages and disadvantages of different size distributions and surface conditions of the spheres. Furthermore, reaction temperature, reaction time, citric acid equivalents, and gel to microsphere ratio will be altered to determine optimal synthesis parameters for depositing Cr2GaC onto spherical templates. Cr2GaC serves as a model compound because it has been successfully synthesized through sol-gel chemistry in the past.10 This phase will be prepared through non-conventional sol-gel chemistry, with various heating profiles, both furnace and microwave, and will be characterized through X-ray diffraction (XRD), and Rietveld refinement. Further, the morphology and atomic composition will be analyzed through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS).

ContributorsWasserbeck, Andrew (Author) / Birkel, Christina (Thesis director) / Siebert, Jan Paul (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

MAX phases are ternary carbides or nitrides that possess unique material characteristics, often simplified as a mix of metallic and ceramic properties. Many aspects of MAX phases are still being researched, but they have exciting potential applications in high-temperature structural systems, the next generation of nuclear power plants, and concentrated

MAX phases are ternary carbides or nitrides that possess unique material characteristics, often simplified as a mix of metallic and ceramic properties. Many aspects of MAX phases are still being researched, but they have exciting potential applications in high-temperature structural systems, the next generation of nuclear power plants, and concentrated solar power. This project aims to benefit further research into these applications by validating a rapid unconventional synthesis method: microwave-assisted sol-gel synthesis. Three MAX phases (Cr2GaC, Cr2GeC, and V2GeC) were successfully synthesized via this route, which should open the door for more rapid prototyping and ultimately more efficient research.

ContributorsPatarakun, Keene Narin (Author) / Birkel, Christina (Thesis director) / Seo, Don (Committee member) / Petuskey, William (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135814-Thumbnail Image.png
Description
The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the

The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the path to its synthesis. While Chapter 1 discusses DNA and Uracil-DNA Glycosylase with regards to the base excision repair pathway, Chapter 2 focuses on chemical synthesis of an intermediate in the pathway to the synthesis of TNA, an analogous structure with a different saccharide in the sugar-phosphate backbone.
Chapter 1 covers the research under Dr. Levitus. Four oligonucleotides were reacted for zero, five, and thirty minutes with uracil-DNA glycosylase and subsequent addition of piperidine. These oligonucleotides were chosen based on their torsional rigidities as predicted by past research and predictions. The objective was to better understand the relationship between the sequence of DNA surrounding the incorrect base and the enzyme’s ability to remove said base in order to prepare the DNA for the next step of the base excision repair pathway. The first pair of oligonucleotides showed no statistically significant difference in enzymatic efficiency with p values of 0.24 and 0.42, while the second pair had a p value of 0.01 at the five-minute reaction. The second pair is currently being researched at different reaction times to determine at what point the enzyme seems to equilibrate and react semi-equally with all sequences of DNA.
Chapter 2 covers the research conducted under Dr. Chaput. Along the TNA synthesis pathway, the nitrogenous base must be added to the threofuranose sugar. The objective was to optimize the original protocol of Vorbrüggen glycosylation and determine if there were better conditions for the synthesis of the preferred regioisomer. This research showed that toluene and ortho-xylene were more preferable as solvents than the original anhydrous acetonitrile, as the amount of preferred isomer product far outweighed the amount of side product formed, as well as improving total yield overall. The anhydrous acetonitrile reaction had a final yield of 60.61% while the ortho-xylene system had a final yield of 94.66%, an increase of approximately 32%. The crude ratio of preferred isomer to side product was also improved, as it went from 18% undesired in anhydrous acetonitrile to 4% undesired in ortho-xylene, both values normalized to the preferred regioisomer.
ContributorsTamirisa, Ritika Sai (Author) / Levitus, Marcia (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Windman, Todd (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135513-Thumbnail Image.png
Description
Circular Dichroism (CD) and electron paramagnetic resonance (EPR) were used to investigate the metal-binding sites of five different four-helix bundles, which have slight differences in the population of their side chains. Of the four-helix bundles, three have central dinuclear metal binding sites; two of these three also have outer dinuclear

Circular Dichroism (CD) and electron paramagnetic resonance (EPR) were used to investigate the metal-binding sites of five different four-helix bundles, which have slight differences in the population of their side chains. Of the four-helix bundles, three have central dinuclear metal binding sites; two of these three also have outer dinuclear metal binding sites. The other two peptides have two identical, non-central, dinuclear metal binding sites. The CD spectra showed changes in the secondary structure of the peptides, and X-band EPR spectra of these peptides revealed the unique four peak signal of Cu(II). These findings improve our understanding of the metal binding environments of these peptides.
ContributorsCanarie, Elizabeth Rose (Author) / Allen, James (Thesis director) / Wolf, George (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05