Matching Items (14)
Filtering by

Clear all filters

130947-Thumbnail Image.png
Description
The fight for climate justice has been ongoing for decades. However, in a recent effort to address climate change, U.S. congressional leaders Alexandria Ocasio-Cortez of New York and Edward J. Markey of Massachusetts proposed a resolution known as the Green New Deal (GND). Though congress defeated the proposal, the policy

The fight for climate justice has been ongoing for decades. However, in a recent effort to address climate change, U.S. congressional leaders Alexandria Ocasio-Cortez of New York and Edward J. Markey of Massachusetts proposed a resolution known as the Green New Deal (GND). Though congress defeated the proposal, the policy changes envisioned within it have gained political momentum from states and municipalities. So much so, municipalities in the United States have decided to implement their own versions of the GND proposal. Throughout this paper, I analyze the components of three nationally recognized climate proposals that offer a unique approach to actualize the federal GND objectives: New York City's Climate Mobilization Act, Los Angeles's Green New Deal – Sustainable City pLAn, and Seattle's Green New Deal. From these proposals, I draw comparisons to Tempe's Climate Action plan to evaluate their efforts. Though this paper is primarily focused on analyzing the components of municipal GNDs across the nation, this paper also contends that municipalities' are a necessary complement to national efforts in mitigating climate change.
ContributorsMazariegos, Ashley (Author) / Fong, Benjamin Y. (Thesis director) / Calhoun, Craig (Committee member) / Economics Program in CLAS (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
132267-Thumbnail Image.png
Description
AARP estimates that 90% of seniors wish to remain in their homes during retirement. Seniors need assistance as they age, historically they have received assistance from either family members, nursing homes, or Continuing Care Retirement Communities. For seniors not wanting any of these options, there has been very few alternatives.

AARP estimates that 90% of seniors wish to remain in their homes during retirement. Seniors need assistance as they age, historically they have received assistance from either family members, nursing homes, or Continuing Care Retirement Communities. For seniors not wanting any of these options, there has been very few alternatives. Now, the emergence of the continuing care at home program is providing hope for a different method of elder care moving forward. CCaH programs offer services such as: skilled nursing care, care coordination, emergency response systems, aid with personal and health care, and transportation. Such services allow seniors to continue to live in their own home with assistance as their health deteriorates over time. Currently, only 30 CCaH programs exist. With the growth of the elderly population in the coming years, this model seems poised for growth.
ContributorsSturm, Brendan (Author) / Milovanovic, Jelena (Thesis director) / Hassett, Matthew (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130966-Thumbnail Image.png
Description
Greenhouse gas emissions (GHG) continue to contribute heavily to global warming. It is estimated that the international community has only until 2050 to eliminate total carbon emissions or risk irreversible climate change. Arizona, despite its vast solar energy resources, is particularly behind in the global transition to carbon-free energy. This

Greenhouse gas emissions (GHG) continue to contribute heavily to global warming. It is estimated that the international community has only until 2050 to eliminate total carbon emissions or risk irreversible climate change. Arizona, despite its vast solar energy resources, is particularly behind in the global transition to carbon-free energy. This paper looks to explore issues that may be preventing Arizona from an efficient transition to carbon-free generation technologies. Identifiable factors include outdated state energy generation standards, lack of oversight and accountability of Arizona’s electricity industry regulatory body, and the ability for regulated utilities to take advantage of “dark money” campaign contributions. Various recommendations for mitigating the factors preventing Arizona from a carbon-free future are presented. Possibilities such as modernizing state energy generation standards, increasing oversight and accountability of Arizona’s electricity industry regulatory body, and potential market restructuring which would do away with the traditional regulated utility framework are explored. The goal is to inform readers of the issues plaguing the Arizona energy industry and recommend potential solutions moving forward.
ContributorsWaller, Troy (Author) / Sheriff, Glenn (Thesis director) / Rule, Troy (Committee member) / Economics Program in CLAS (Contributor) / Dean, W.P. Carey School of Business (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
133413-Thumbnail Image.png
Description
Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on

Catastrophe events occur rather infrequently, but upon their occurrence, can lead to colossal losses for insurance companies. Due to their size and volatility, catastrophe losses are often treated separately from other insurance losses. In fact, many property and casualty insurance companies feature a department or team which focuses solely on modeling catastrophes. Setting reserves for catastrophe losses is difficult due to their unpredictable and often long-tailed nature. Determining loss development factors (LDFs) to estimate the ultimate loss amounts for catastrophe events is one method for setting reserves. In an attempt to aid Company XYZ set more accurate reserves, the research conducted focuses on estimating LDFs for catastrophes which have already occurred and have been settled. Furthermore, the research describes the process used to build a linear model in R to estimate LDFs for Company XYZ's closed catastrophe claims from 2001 \u2014 2016. This linear model was used to predict a catastrophe's LDFs based on the age in weeks of the catastrophe during the first year. Back testing was also performed, as was the comparison between the estimated ultimate losses and actual losses. Future research consideration was proposed.
ContributorsSwoverland, Robert Bo (Author) / Milovanovic, Jelena (Thesis director) / Zicarelli, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134798-Thumbnail Image.png
Description
There has been much work done predicting the effects of climate change on transportation systems, this research parallels that past work and focuses on the effect of changes in precipitation on roadway drainage systems. On a macro level, this work addresses the process that should be taken to make predictions

There has been much work done predicting the effects of climate change on transportation systems, this research parallels that past work and focuses on the effect of changes in precipitation on roadway drainage systems. On a macro level, this work addresses the process that should be taken to make predictions about the vulnerability of this system due to changes in precipitation. This work also addresses the mechanisms of failure of these drainage systems and how they may be affected by changes in precipitation due to climate change. These changes may entail more frequent failure by certain mechanisms, or a shift in the mechanisms for particular infrastructure. A sample water basin in the urban environment of Phoenix, Arizona is given as a case study. This study looks at the mechanisms of failure of the infrastructure therein, as well as provides a process of analyzing the effects of increases in precipitation to the vulnerability of this infrastructure. It was found that drainage structures at roadways being currently designed will see increases from 20-30% in peak discharge, which will lead to increased frequency of failure.
ContributorsHolt, Nathan Thomas (Author) / Chester, Mikhail V (Thesis director) / Mascaro, Giuseppe (Committee member) / Underwood, Benjamin S. (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
168509-Thumbnail Image.png
Description
Observational evidence is mounting on the reduction of winter precipitation and an earlier snowmelt in the southwestern United States. It is unclear, however, how these changes, along with forest thinning, will impact water supplies due to complexities in the precipitation-streamflow transformation. In this study, I use the Triangulated Irregular Network-based

Observational evidence is mounting on the reduction of winter precipitation and an earlier snowmelt in the southwestern United States. It is unclear, however, how these changes, along with forest thinning, will impact water supplies due to complexities in the precipitation-streamflow transformation. In this study, I use the Triangulated Irregular Network-based Real-time Integrated Basin Simulator (tRIBS) to provide insight into the independent and combined effects of climate change and forest cover reduction on the hydrologic response in the Beaver Creek (~1100 km2) of central Arizona. Prior to these experiments, confidence in the hydrologic model is established using snow observations at two stations, two nested streamflow gauges, and estimates of spatially-distributed snow water equivalent over a long-term period (water years 2003-2018). Model forcings were prepared using station observations and radar rainfall estimates in combination with downscaling and bias correction techniques that account for the orographic controls on air temperature and precipitation. Model confidence building showed that tRIBS is able to capture well the variation in snow cover and streamflow during wet and dry years in the 16 year simulation period. The results from this study show that the climate change experiments increased average annual streamflow by 1.5% at +1°C of warming. However, a 28% decrease in streamflow occurs by +6°C of warming as evapotranspiration (ET) increases by 10%. Forest thinning shifted the warming threshold where ET increases reduce streamflow yield until +4°C of warming as compared to no forest thinning when this threshold occurs at +2°C. An average increase in streamflow of 12% occurs after forest thinning across all climate scenarios. While the snow covered area is unaffected by thinning, the volume of snowmelt increases and is linked to the higher water yield. These findings indicate that water managers can expect decreases in streamflow due to climate change but may be able to offset these impacts up to a warming threshold by thinning forested areas within the Beaver Creek.
ContributorsCederstrom, Charles Joshua (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Svoma, Bohumil (Committee member) / Arizona State University (Publisher)
Created2021
171584-Thumbnail Image.png
Description
Accelerated climate and land use land cover (LULC) changes are anticipated to significantly impact water resources in the Colorado River Basin (CRB), a major freshwater source in the southwestern U.S. The need for actionable information from hydrologic research is growing rapidly, given considerable uncertainties. For instance, it is unclear if

Accelerated climate and land use land cover (LULC) changes are anticipated to significantly impact water resources in the Colorado River Basin (CRB), a major freshwater source in the southwestern U.S. The need for actionable information from hydrologic research is growing rapidly, given considerable uncertainties. For instance, it is unclear if the predicted high degree of interannual precipitation variability across the basin could overwhelm the impacts of future warming and how this might vary in space. Climate change will also intensify forest disturbances (wildfire, mortality, thinning), which can significantly impact water resources. These impacts are not constrained, given findings of mixed post-disturbance hydrologic responses. Process-based models like the Variable Infiltration Capacity (VIC) platform can quantitatively predict hydrologic behaviors of these complex systems. However, barriers limit their effectiveness to inform decision making: (1) simulations generate enormous data volumes, (2) outputs are inaccessible to managers, and (3) modeling is not transparent. I designed a stakeholder engagement and VIC modeling process to overcome these challenges, and developed a web-based tool, VIC-Explorer, to “open the black box” of my efforts. Meteorological data was from downscaled historical (1950-2005) and future projections (2006-2099) of eight climate models that best represent climatology under low- and high- emissions. I used two modeling methods: (1) a “top-down” approach to assess an “envelope of hydrologic possibility” under the 16 climate futures; and (2) a “bottom-up” evaluation of hydrology in two climates from the ensemble representing “Hot/Dry” and “Warm/Wet” futures. For the latter assessment, I modified land cover using projections of a LULC model and applied more drastic forest disturbances. I consulted water managers to expand the legitimacy of the research. Results showed Far-Future (2066-2095) basin-wide mean annual streamflow decline (relative to 1976-2005; ensemble median trends of -5% to -25%), attributed to warming that diminished spring snowfall and melt and year-round increased soil evaporation from the Upper Basin, and overall precipitation declines in the Lower Basin. Forest disturbances partially offset warming effects (basin-wide mean annual streamflow up to 12% larger than without disturbance). Results are available via VIC-Explorer, which includes documentation and guided analyses to ensure findings are interpreted appropriately for decision-making.
ContributorsWhitney, Kristen Marie (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Whipple, Kelin X (Committee member) / White, Dave D (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2022
164501-Thumbnail Image.png
Description
Climate change has necessitated the transition from non-renewable energy sources such as coal, oil, and natural gas to renewable, low-carbon energy sources such as solar, wind, and hydroelectric. These energy sources, although much better equipped to reduce carbon-induced climate change, require materials that pollute the environment when mined and can

Climate change has necessitated the transition from non-renewable energy sources such as coal, oil, and natural gas to renewable, low-carbon energy sources such as solar, wind, and hydroelectric. These energy sources, although much better equipped to reduce carbon-induced climate change, require materials that pollute the environment when mined and can release toxic waste during processing and disposal. Critical minerals are used in low-carbon renewable energy, and they are subject to both the environmental issues that accompany regular mineral extraction as well as issues related to scarcity from geopolitical issues, trade policy, and geological rarity. Tellurium is a critical mineral produced primarily as a byproduct of copper and used in cadmium-telluride (CdTe) solar panels. As these solar panels become more common, the problems that arise with many critical minerals’ usage (pollution, unfair distribution, human health complications) become more apparent. Looking at these issues through an energy justice framework can help to ensure availability, sustainability, inter/intragenerational equity, and accountability, and this framework can provide a more nuanced understanding of the costs and the benefits that will accrue with the transition to low-carbon, renewable energy. Energy justice issues surrounding the extraction of critical minerals will become increasingly prevalent as more countries pledge to have a zero-carbon future.
ContributorsMaas, Samantha (Author) / Jalbert, Kirk (Thesis director) / Chester, Mikhail (Committee member) / Barrett, The Honors College (Contributor) / School of Public Affairs (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165134-Thumbnail Image.png
Description
A factor accounting for the COVID-19 pandemic was added to a generalized linear model to more accurately predict unpaid claims. COVID-19 has affected not just healthcare, but all sectors of the economy. Because of this, whether or not an automobile insurance claim is filed during the pandemic needs to be

A factor accounting for the COVID-19 pandemic was added to a generalized linear model to more accurately predict unpaid claims. COVID-19 has affected not just healthcare, but all sectors of the economy. Because of this, whether or not an automobile insurance claim is filed during the pandemic needs to be taken into account while estimating unpaid claims. Reserve-estimating functions such as glmReserve from the “ChainLadder” package in the statistical software R were experimented with to produce their own results. Because of their insufficiency, a manual approach to building the model turned out to be the most proficient method. Utilizing the GLM function, a model was built that emulated linear regression with a factor for COVID-19. The effects of such a model are analyzed based on effectiveness and interpretablility. A model such as this would prove useful for future calculations, especially as society is now returning to a “normal” state.
ContributorsKossler, Patrick (Author) / Zicarelli, John (Thesis director) / Milovanovic, Jelena (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
187845-Thumbnail Image.png
Description
The hydrologic cycle in drylands is complex with large spatiotemporal variationsacross scales and is particularly vulnerable to changes in climate and land cover. To address the challenges posed by hydrologic changes, a synergistic approach that combines numerical models, ground and remotely sensed observations, and data analysis is crucial. This dissertation uses innovative detection

The hydrologic cycle in drylands is complex with large spatiotemporal variationsacross scales and is particularly vulnerable to changes in climate and land cover. To address the challenges posed by hydrologic changes, a synergistic approach that combines numerical models, ground and remotely sensed observations, and data analysis is crucial. This dissertation uses innovative detection and modeling techniques to assess key hydrologic variables in drylands, including irrigated water use, streamflow, and snowpack conditions, answering following research questions that also have broad societal implications: (1) What are the individual and combined effects of future climate and land use change on irrigation water use (IWU) in the Phoenix Metropolitan Area (PMA)?; (2) How can temporal changes in streamflow and the impacts of flash flooding be detected in dryland rivers?; and (3) What are the impacts of rainfall-snow partitioning on future snowpack and streamflow in the Colorado River Basin (CRB)? Firstly, I conducted a scenario modeling using the Variable Infiltration Capacity (VIC) model under future climate and land use change scenarios. Results showed that future IWU will change from -0.5% to +6.8% in the far future (2071-2100) relative to the historical period (1981-2010). Secondly, I employed CubeSat imagery to map streamflow presence in the Hassayampa River of Arizona, finding that the imaging capacity of CubeSats enabled the detection of ephemeral flow events using the surface reflectance of the near-infrared (NIR) band. Results showed that 12% of reaches were classified as intermittent, with the remaining as ephemeral. Finally, I implemented a physically-based rainfall-snow partitioning scheme in the VIC model that estimates snowfall fraction from the wet-bulb temperature using a sigmoid function. The new scheme predicts more significant declines in snowfall (-8 to -11%) and streamflow (-14 to -27%) by the end of the 21st century over the CRB, relative to historical conditions. Overall, this dissertation demonstrates how innovative technologies can enhance the understanding of dryland hydrologic changes and inform decision-making of water resources management. The findings offer important insights for policymakers, water managers, and researchers who seek to ensure water resources sustainability under the effects of climate and land use change.
ContributorsWang, Zhaocheng (Author) / Vivoni, Enrique R (Thesis advisor) / White, Dave D (Committee member) / Mascaro, Giuseppe (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2023