Matching Items (2)
Filtering by

Clear all filters

152299-Thumbnail Image.png
Description
Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health

Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health impacts in urban areas, where large numbers of vulnerable people reside and where local-scale urban heat island effects (UHI) retard and reduce nighttime cooling. This dissertation presents three empirical case studies that were conducted to advance our understanding of human vulnerability to heat in coupled human-natural systems. Using vulnerability theory as a framework, I analyzed how various social and environmental components of a system interact to exacerbate or mitigate heat impacts on human health, with the goal of contributing to the conceptualization of human vulnerability to heat. The studies: 1) compared the relationship between temperature and health outcomes in Chicago and Phoenix; 2) compared a map derived from a theoretical generic index of vulnerability to heat with a map derived from actual heat-related hospitalizations in Phoenix; and 3) used geospatial information on health data at two areal units to identify the hot spots for two heat health outcomes in Phoenix. The results show a 10-degree Celsius difference in the threshold temperatures at which heat-stress calls in Phoenix and Chicago are likely to increase drastically, and that Chicago is likely to be more sensitive to climate change than Phoenix. I also found that heat-vulnerability indices are sensitive to scale, measurement, and context, and that cities will need to incorporate place-based factors to increase the usefulness of vulnerability indices and mapping to decision making. Finally, I found that identification of geographical hot-spot of heat-related illness depends on the type of data used, scale of measurement, and normalization procedures. I recommend using multiple datasets and different approaches to spatial analysis to overcome this limitation and help decision makers develop effective intervention strategies.
ContributorsChuang, Wen-Ching (Author) / Gober, Patricia (Thesis advisor) / Boone, Christopher (Committee member) / Guhathakurta, Subhrajit (Committee member) / Ruddell, Darren (Committee member) / Arizona State University (Publisher)
Created2013
157960-Thumbnail Image.png
Description

Urban heat is a growing problem that impacts public health, water and energy use, and the economy and affects population subgroups differently. Exposure and sensitivity, two key factors in determining vulnerability, have been widely researched. This dissertation focuses on the adaptive capacity component of heat vulnerability at the individual, household,

Urban heat is a growing problem that impacts public health, water and energy use, and the economy and affects population subgroups differently. Exposure and sensitivity, two key factors in determining vulnerability, have been widely researched. This dissertation focuses on the adaptive capacity component of heat vulnerability at the individual, household, and community scale. Using a mixed methods approach and metropolitan Phoenix as a test site, I explored how vulnerable communities understand and adapt to increasing extreme urban heat to uncover adaptive capacity that is not being operationalized well through current heat vulnerability frameworks. Twenty-three open-ended interviews were conducted where residents were encouraged to tell their stories about past and present extreme heat adaptive capacity behaviors. A community-based participatory research project consisting of three workshops and demonstration projects was piloted in three underserved neighborhoods to address urban heat on a local scale and collaboratively create community heat action plans. Last, a practitioner stakeholder meeting was held to discuss how the heat action plans will be integrated into other community efforts. Using data from the interviews, workshops, and stakeholder meeting, social capital was examined in the context of urban heat. Although social capital has been measured in a multitude of ways to gauge social relationships, trust, and reciprocity within a community, it is situational and reflects a position within the formal and informal aspects of any issue. Three narratives emerged from the interviews illuminating differentiated capacities to cope with urban heat: heat is an inconvenience, heat is a manageable problem, and heat is a catastrophe. For each of these narratives, generic adaptive capacity is impacted differently by specific heat adaptive capacity. The heat action plan workshops generated hyper-local heat solutions that reflected the neighborhoods’ different identities. Community-based organizations were instrumental in the success of this program. Social capital indicators were developed specific to urban heat that rely on heavily on family and personal relationships, attitudes and beliefs, perceived support, network size and community engagement. This research highlights how extreme heat vulnerability may need to be rethought to capture adaptive capacity nuances and the dynamic structure of who is vulnerable under what circumstances.

ContributorsGuardaro, Melissa (Author) / Redman, Charles L. (Thesis advisor) / Hondula, David M. (Committee member) / Johnston, Erik W., 1977- (Committee member) / Arizona State University (Publisher)
Created2019