Matching Items (4)
Filtering by

Clear all filters

152291-Thumbnail Image.png
Description
Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions.
ContributorsLiu, Hao (Author) / Kuang, Yang (Thesis advisor) / Jackiewicz, Zdzislaw (Committee member) / Lanchier, Nicolas (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2013
156612-Thumbnail Image.png
Description
The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of

The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of mathematical (compartmental) modeling and statistical data analysis. In particular, the objective is to find suitable values and/or ranges of the climate variables considered (typically temperature and rainfall) for maximum vector abundance and consequently, maximum transmission intensity of the disease(s) they cause.

Motivated by the fact that understanding the dynamics of disease vector is crucial to understanding the transmission and control of the VBDs they cause, a novel weather-driven deterministic model for the population biology of the mosquito is formulated and rigorously analyzed. Numerical simulations, using relevant weather and entomological data for Anopheles mosquito (the vector for malaria), show that maximum mosquito abundance occurs when temperature and rainfall values lie in the range [20-25]C and [105-115] mm, respectively.

The Anopheles mosquito ecology model is extended to incorporate human dynamics. The resulting weather-driven malaria transmission model, which includes many of the key aspects of malaria (such as disease transmission by asymptomatically-infectious humans, and enhanced malaria immunity due to repeated exposure), was rigorously analyzed. The model which also incorporates the effect of diurnal temperature range (DTR) on malaria transmission dynamics shows that increasing DTR shifts the peak temperature value for malaria transmission from 29C (when DTR is 0C) to about 25C (when DTR is 15C).

Finally, the malaria model is adapted and used to study the transmission dynamics of chikungunya, dengue and Zika, three diseases co-circulating in the Americas caused by the same vector (Aedes aegypti). The resulting model, which is fitted using data from Mexico, is used to assess a few hypotheses (such as those associated with the possible impact the newly-released dengue vaccine will have on Zika) and the impact of variability in climate variables on the dynamics of the three diseases. Suitable temperature and rainfall ranges for the maximum transmission intensity of the three diseases are obtained.
ContributorsOkuneye, Kamaldeen O (Author) / Gumel, Abba B (Thesis advisor) / Kuang, Yang (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Nagy, John (Committee member) / Arizona State University (Publisher)
Created2018
Description
Since the 20th century, Arizona has undergone shifts in agricultural practices, driven by urban expansion and crop irrigation regulations. These changes present environmental challenges, altering atmospheric processes and influencing climate dynamics. Given the potential threats of climate change and drought on water availability for agriculture, further modifications in the agricultural

Since the 20th century, Arizona has undergone shifts in agricultural practices, driven by urban expansion and crop irrigation regulations. These changes present environmental challenges, altering atmospheric processes and influencing climate dynamics. Given the potential threats of climate change and drought on water availability for agriculture, further modifications in the agricultural landscape are expected. To understand these land use changes and their impact on carbon dynamics, our study quantified aboveground carbon storage in both cultivated and abandoned agricultural fields. To accomplish this, we employed Python and various geospatial libraries in Jupyter Notebook files, for thorough dataset assembly and visual, quantitative analysis. We focused on nine counties known for high cultivation levels, primarily located in the lower latitudes of Arizona. Our analysis investigated carbon dynamics across not only abandoned and actively cultivated croplands but also neighboring uncultivated land, for which we estimated the extent. Additionally, we compared these trends with those observed in developed land areas. The findings revealed a hierarchy in aboveground carbon storage, with currently cultivated lands having the lowest levels, followed by abandoned croplands and uncultivated wilderness. However, wilderness areas exhibited significant variation in carbon storage by county compared to cultivated and abandoned lands. Developed lands ranked highest in aboveground carbon storage, with the median value being the highest. Despite county-wide variations, abandoned croplands generally contained more carbon than currently cultivated areas, with adjacent wilderness lands containing even more than both. This trend suggests that cultivating croplands in the region reduces aboveground carbon stores, while abandonment allows for some replenishment, though only to a limited extent. Enhancing carbon stores in Arizona can be achieved through active restoration efforts on abandoned cropland. By promoting native plant regeneration and boosting aboveground carbon levels, these measures are crucial for improving carbon sequestration. We strongly advocate for implementing this step to facilitate the regrowth of native plants and enhance overall carbon storage in the region.
ContributorsGoodwin, Emily (Author) / Eikenberry, Steffen (Thesis director) / Kuang, Yang (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05
190964-Thumbnail Image.png
Description
Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation

Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation addresses the questions of how vector and host demography impact WNV dynamics, and how expected and likely climate change scenarios will affect demographic and epidemiological processes of WNV transmission. First, a data fusion method is developed that connects non-autonomous logistic model parameters to mosquito time series data. This method captures the inter-annual and intra-seasonal variation of mosquito populations within a geographical location. Next, a three-population WNV model between mosquito vectors, bird hosts, and human hosts with infection-age structure for the vector and bird host populations is introduced. A sensitivity analysis uncovers which parameters have the most influence on WNV outbreaks. Finally, the WNV model is extended to include the non-autonomous population model and temperature-dependent processes. Model parameterization using historical temperature and human WNV case data from the Greater Toronto Area (GTA) is conducted. Parameter fitting results are then used to analyze possible future WNV dynamics under two climate change scenarios. These results suggest that WNV risk for the GTA will substantially increase as temperature increases from climate change, even under the most conservative assumptions. This demonstrates the importance of ensuring that the warming of the planet is limited as much as possible.
ContributorsMancuso, Marina (Author) / Milner, Fabio A (Thesis advisor) / Kuang, Yang (Committee member) / Kostelich, Eric (Committee member) / Eikenberry, Steffen (Committee member) / Manore, Carrie (Committee member) / Arizona State University (Publisher)
Created2023