Matching Items (4)
Filtering by

Clear all filters

152261-Thumbnail Image.png
Description
Human activity has increased loading of reactive nitrogen (N) in the environment, with important and often deleterious impacts on biodiversity, climate, and human health. Since the fate of N in the ecosystem is mainly controlled by microorganisms, understanding the factors that shape microbial communities becomes relevant and urgent. In arid

Human activity has increased loading of reactive nitrogen (N) in the environment, with important and often deleterious impacts on biodiversity, climate, and human health. Since the fate of N in the ecosystem is mainly controlled by microorganisms, understanding the factors that shape microbial communities becomes relevant and urgent. In arid land soils, these microbial communities and factors are not well understood. I aimed to study the role of N cycling microbes, such as the ammonia-oxidizing bacteria (AOB), the recently discovered ammonia-oxidizing archaea (AOA), and various fungal groups, in soils of arid lands. I also tested if niche differentiation among microbial populations is a driver of differential biogeochemical outcomes. I found that N cycling microbial communities in arid lands are structured by environmental factors to a stronger degree than what is generally observed in mesic systems. For example, in biological soil crusts, temperature selected for AOA in warmer deserts and for AOB in colder deserts. Land-use change also affects niche differentiation, with fungi being the major agents of N2O production in natural arid lands, whereas emissions could be attributed to bacteria in mesic urban lawns. By contrast, NO3- production in the native desert and managed soils was mainly controlled by autotrophic microbes (i.e., AOB and AOA) rather than by heterotrophic fungi. I could also determine that AOA surprisingly responded positively to inorganic N availability in both short (one month) and long-term (seven years) experimental manipulations in an arid land soil, while environmental N enrichment in other ecosystem types is known to favor AOB over AOA. This work improves our predictions of ecosystem response to anthropogenic N increase and shows that paradigms derived from mesic systems are not always applicable to arid lands. My dissertation also highlights the unique ecology of ammonia oxidizers and draws attention to the importance of N cycling in desert soils.
ContributorsMarusenko, Yevgeniy (Author) / Hall, Sharon J (Thesis advisor) / Garcia-Pichel, Ferran (Thesis advisor) / Mclain, Jean E (Committee member) / Schwartz, Egbert (Committee member) / Arizona State University (Publisher)
Created2013
136715-Thumbnail Image.png
Description
Microarthropods play important roles in the decomposition process of the detrital food web, where they break down organic matter and return nutrients to the soil. However, only a small percentage of the belowground microarthropod population has been studied or even discovered, leading to a decrease in the knowledge of all

Microarthropods play important roles in the decomposition process of the detrital food web, where they break down organic matter and return nutrients to the soil. However, only a small percentage of the belowground microarthropod population has been studied or even discovered, leading to a decrease in the knowledge of all of the processes carried out by these organisms and their importance to the soil. This is because microarthropod extraction methods are not 100% effective at collecting specimens. This study aimed to find an ideal quantitative procedure to better record the number of microarthropods existing in the soil and to determine if a seasonal variation exists that effects the success of extraction. Two extraction methods, including dynamic extraction and heptane flotation extraction, were compared across two seasons, a dry season (June) and a wet season (September). Average biomasses and average richness were calculated for four different functional groups, including Prostigmata, Mesostigmata, Cryptostigmata, and Collembola, across the two seasons, and statistical analysis was performed to determine if any differences that existed were statistically significant. Results indicate that the dynamic extraction method was significantly more effective for the collection of microarthropods during the wet season, and the heptane extraction method was significantly more effective during the dry season. In addition, the heptane procedure recovered samples of higher average richness than the dynamic method during both seasons. The heptane procedure works best for extraction during the dry season because it is able to collect organisms that entered into an ametabolic anhydrobiotic state to escape desiccation. These organisms form a protective lipid layer around their exoskeletons to retain water, and the non-polar exoskeletons display a chemical affinity to the heptane fluid, allowing for collection out of the soil and into the heptane layer. Despite these results, no one method is entirely superior to the other, and the most efficacious procedure depends on the researcher's aim of study.
ContributorsAntol, Rachel Lynn (Author) / Sabo, John L. (Thesis director) / Hall, Sharon (Committee member) / Wyant, Karl A. (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
158702-Thumbnail Image.png
Description
Desert organisms lead harsh lives owing to the extreme, often unpredictable environmental conditions they endure. Climate change will likely make their existence even harsher. Predicting the ecological consequences of future climate scenarios thus requires understanding how the biota will be affected by climatic shifts. Biological soil crusts (biocrusts) are

Desert organisms lead harsh lives owing to the extreme, often unpredictable environmental conditions they endure. Climate change will likely make their existence even harsher. Predicting the ecological consequences of future climate scenarios thus requires understanding how the biota will be affected by climatic shifts. Biological soil crusts (biocrusts) are an important ecosystem component in arid lands, one that covers large portions of the landscape, improving soil stability and fertility. Because cyanobacteria are biocrust’s preeminent primary producers, eking out an existence during short pulses of precipitation, they represent a relevant global change object of study. I assessed how climate scenarios predicted for the Southwestern United States (US) will affect biocrusts using long-term, rainfall-modifying experimental set-ups that imposed either more intense drought, a seasonally delayed monsoon season, or a shift to smaller but more frequent precipitation events. I expected drought to be detrimental, but not a delay in the monsoon season. Surprisingly, both treatments showed similar effects on cyanobacterial community composition and population size after four years. While successionally incipient biocrusts were unaffected, mature biocrusts lost biomass and diversity with treatment, especially among nitrogen-fixing cyanobacteria. In separate experiments, I assessed the effect of rainfall with modified event size and frequency after a decade of treatment. Small, frequent rainfall events surprisingly enhanced the diversity and biomass of bacteria and cyanobacteria, with clear winners and losers: nitrogen-fixing Scytonema sp. benefited, while Microcoleus vaginatus lost its dominance. As an additional finding, I could also show that water addition is not always beneficial to biocrusts, calling into question the notion that these are strictly water-limited systems.

Finally, results interpretation was severely hampered by a lack of appropriate systematic treatment for an important group of biocrust cyanobacteria, the “Microcoleus steenstrupii complex”. I characterized the complex using a polyphasic approach, leading to the formal description of a new family (Porphyrosiphonaceae) of desiccation resistant cyanobacteria that includes 11 genera, of which 5 had to be newly described. Under the new framework, the distribution and abundance of biocrust cyanobacteria with respect to environmental conditions can now be understood. This body of work contributes significantly to explain current distributional patterns of biocrust cyanobacteria and to predict their fate in the face of climate change.
ContributorsMoreira Camara Fernandes, Vanessa (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Rudgers, Jennifer (Committee member) / Sala, Osvaldo (Committee member) / Penton, Christopher (Committee member) / Arizona State University (Publisher)
Created2020