Matching Items (9)
Filtering by

Clear all filters

155038-Thumbnail Image.png
Description
Rapid urban expansion and the associated landscape modifications have led to significant changes of surface processes in built environments. These changes further interact with the overlying atmospheric boundary layer and strongly modulate urban microclimate. To capture the impacts of urban land surface processes on urban boundary layer dynamics, a coupled

Rapid urban expansion and the associated landscape modifications have led to significant changes of surface processes in built environments. These changes further interact with the overlying atmospheric boundary layer and strongly modulate urban microclimate. To capture the impacts of urban land surface processes on urban boundary layer dynamics, a coupled urban land-atmospheric modeling framework has been developed. The urban land surface is parameterized by an advanced single-layer urban canopy model (SLUCM) with realistic representations of urban green infrastructures such as lawn, tree, and green roof, etc. The urban atmospheric boundary layer is simulated by a single column model (SCM) with both convective and stable schemes. This coupled SLUCM-SCM framework can simulate the time evolution and vertical profile of different meteorological variables such as virtual potential temperature, specific humidity and carbon dioxide concentration. The coupled framework has been calibrated and validated in the metropolitan Phoenix area, Arizona. To quantify the model sensitivity, an advanced stochastic approach based on Markov-Chain Monte Carlo procedure has been applied. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains, including urban land use, geometry, roughness of momentum, and vegetation fraction. In particular, different types of urban vegetation (mesic/xeric) affect the boundary layer dynamics through different mechanisms. Furthermore, this framework can be implanted into large-scale models such as Weather Research and Forecasting model to assess the impact of urbanization on regional climate.
ContributorsSong, Jiyun (Author) / Wang, Zhihua (Thesis advisor) / Vivoni, Enrique R (Committee member) / Mascaro, Giuseppe (Committee member) / Myint, Soe W (Committee member) / Sailor, David (Committee member) / Arizona State University (Publisher)
Created2016
148314-Thumbnail Image.png
Description

An in depth look at the rhetoric behind the campus carry debate at the University of Texas at Austin. This thesis researched and examined primary sources from The Daily Texan and The Austin-American Statesman attempting to analyze what was at stake for both sides of the argument and what the

An in depth look at the rhetoric behind the campus carry debate at the University of Texas at Austin. This thesis researched and examined primary sources from The Daily Texan and The Austin-American Statesman attempting to analyze what was at stake for both sides of the argument and what the most effective rhetorical tool was.

ContributorsBlumstein, Cory Joshua (Author) / Young, Alexander (Thesis director) / O'Flaherty, Katherine (Committee member) / School of Criminology and Criminal Justice (Contributor) / School of Public Affairs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
187845-Thumbnail Image.png
Description
The hydrologic cycle in drylands is complex with large spatiotemporal variationsacross scales and is particularly vulnerable to changes in climate and land cover. To address the challenges posed by hydrologic changes, a synergistic approach that combines numerical models, ground and remotely sensed observations, and data analysis is crucial. This dissertation uses innovative detection

The hydrologic cycle in drylands is complex with large spatiotemporal variationsacross scales and is particularly vulnerable to changes in climate and land cover. To address the challenges posed by hydrologic changes, a synergistic approach that combines numerical models, ground and remotely sensed observations, and data analysis is crucial. This dissertation uses innovative detection and modeling techniques to assess key hydrologic variables in drylands, including irrigated water use, streamflow, and snowpack conditions, answering following research questions that also have broad societal implications: (1) What are the individual and combined effects of future climate and land use change on irrigation water use (IWU) in the Phoenix Metropolitan Area (PMA)?; (2) How can temporal changes in streamflow and the impacts of flash flooding be detected in dryland rivers?; and (3) What are the impacts of rainfall-snow partitioning on future snowpack and streamflow in the Colorado River Basin (CRB)? Firstly, I conducted a scenario modeling using the Variable Infiltration Capacity (VIC) model under future climate and land use change scenarios. Results showed that future IWU will change from -0.5% to +6.8% in the far future (2071-2100) relative to the historical period (1981-2010). Secondly, I employed CubeSat imagery to map streamflow presence in the Hassayampa River of Arizona, finding that the imaging capacity of CubeSats enabled the detection of ephemeral flow events using the surface reflectance of the near-infrared (NIR) band. Results showed that 12% of reaches were classified as intermittent, with the remaining as ephemeral. Finally, I implemented a physically-based rainfall-snow partitioning scheme in the VIC model that estimates snowfall fraction from the wet-bulb temperature using a sigmoid function. The new scheme predicts more significant declines in snowfall (-8 to -11%) and streamflow (-14 to -27%) by the end of the 21st century over the CRB, relative to historical conditions. Overall, this dissertation demonstrates how innovative technologies can enhance the understanding of dryland hydrologic changes and inform decision-making of water resources management. The findings offer important insights for policymakers, water managers, and researchers who seek to ensure water resources sustainability under the effects of climate and land use change.
ContributorsWang, Zhaocheng (Author) / Vivoni, Enrique R (Thesis advisor) / White, Dave D (Committee member) / Mascaro, Giuseppe (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2023
171584-Thumbnail Image.png
Description
Accelerated climate and land use land cover (LULC) changes are anticipated to significantly impact water resources in the Colorado River Basin (CRB), a major freshwater source in the southwestern U.S. The need for actionable information from hydrologic research is growing rapidly, given considerable uncertainties. For instance, it is unclear if

Accelerated climate and land use land cover (LULC) changes are anticipated to significantly impact water resources in the Colorado River Basin (CRB), a major freshwater source in the southwestern U.S. The need for actionable information from hydrologic research is growing rapidly, given considerable uncertainties. For instance, it is unclear if the predicted high degree of interannual precipitation variability across the basin could overwhelm the impacts of future warming and how this might vary in space. Climate change will also intensify forest disturbances (wildfire, mortality, thinning), which can significantly impact water resources. These impacts are not constrained, given findings of mixed post-disturbance hydrologic responses. Process-based models like the Variable Infiltration Capacity (VIC) platform can quantitatively predict hydrologic behaviors of these complex systems. However, barriers limit their effectiveness to inform decision making: (1) simulations generate enormous data volumes, (2) outputs are inaccessible to managers, and (3) modeling is not transparent. I designed a stakeholder engagement and VIC modeling process to overcome these challenges, and developed a web-based tool, VIC-Explorer, to “open the black box” of my efforts. Meteorological data was from downscaled historical (1950-2005) and future projections (2006-2099) of eight climate models that best represent climatology under low- and high- emissions. I used two modeling methods: (1) a “top-down” approach to assess an “envelope of hydrologic possibility” under the 16 climate futures; and (2) a “bottom-up” evaluation of hydrology in two climates from the ensemble representing “Hot/Dry” and “Warm/Wet” futures. For the latter assessment, I modified land cover using projections of a LULC model and applied more drastic forest disturbances. I consulted water managers to expand the legitimacy of the research. Results showed Far-Future (2066-2095) basin-wide mean annual streamflow decline (relative to 1976-2005; ensemble median trends of -5% to -25%), attributed to warming that diminished spring snowfall and melt and year-round increased soil evaporation from the Upper Basin, and overall precipitation declines in the Lower Basin. Forest disturbances partially offset warming effects (basin-wide mean annual streamflow up to 12% larger than without disturbance). Results are available via VIC-Explorer, which includes documentation and guided analyses to ensure findings are interpreted appropriately for decision-making.
ContributorsWhitney, Kristen Marie (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Whipple, Kelin X (Committee member) / White, Dave D (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2022
158204-Thumbnail Image.png
Description
Recent extreme weather events such the 2020 Nashville, Tennessee tornado and Hurricane Maria highlight the devastating economic losses and loss of life associated with weather-related disasters. Understanding the impacts of extreme weather events is critical to mitigating disaster losses and increasing societal resilience to future events. Geographical approaches are best

Recent extreme weather events such the 2020 Nashville, Tennessee tornado and Hurricane Maria highlight the devastating economic losses and loss of life associated with weather-related disasters. Understanding the impacts of extreme weather events is critical to mitigating disaster losses and increasing societal resilience to future events. Geographical approaches are best suited to examine social and ecological factors in extreme weather event impacts because they systematically examine the spatial interactions (e.g., flows, processes, impacts) of the earth’s system and human-environment relationships. The goal of this research is to demonstrate the utility of geographical approaches in assessing social and ecological factors in extreme weather event impacts. The first two papers analyze the social factors in the impact of Hurricane Sandy through the application of social geographical factors. The first paper examines how knowledge disconnect between experts (climatologists, urban planners, civil engineers) and policy-makers contributed to the damaging impacts of Hurricane Sandy. The second paper examines the role of land use suitability as suggested by Ian McHarg in 1969 and unsustainable planning in the impact of Hurricane Sandy. Overlay analyses of storm surge and damage buildings show damage losses would have been significantly reduced had development followed McHarg’s suggested land use suitability. The last two papers examine the utility of Unpiloted Aerial Systems (UASs) technologies and geospatial methods (ecological geographical approaches) in tornado damage surveys. The third paper discusses the benefits, limitations, and procedures of using UASs technologies in tornado damage surveys. The fourth paper examines topographical influences on tornadoes using UAS technologies and geospatial methods (ecological geographical approach). This paper highlights how topography can play a major role in tornado behavior (damage intensity and path deviation) and demonstrates how UASs technologies can be invaluable tools in damage assessments and improving the understanding of severe storm dynamics (e.g., tornadic wind interactions with topography). Overall, the significance of these four papers demonstrates the potential to improve societal resilience to future extreme weather events and mitigate future losses by better understanding the social and ecological components in extreme weather event impacts through geographical approaches.
ContributorsWagner, Melissa Anne (Author) / Cerveny, Randall S. (Thesis advisor) / Wentz, Elizabeth (Thesis advisor) / Chhetri, Netra B (Committee member) / Vivoni, Enrique R (Committee member) / Arizona State University (Publisher)
Created2020
130947-Thumbnail Image.png
Description
The fight for climate justice has been ongoing for decades. However, in a recent effort to address climate change, U.S. congressional leaders Alexandria Ocasio-Cortez of New York and Edward J. Markey of Massachusetts proposed a resolution known as the Green New Deal (GND). Though congress defeated the proposal, the policy

The fight for climate justice has been ongoing for decades. However, in a recent effort to address climate change, U.S. congressional leaders Alexandria Ocasio-Cortez of New York and Edward J. Markey of Massachusetts proposed a resolution known as the Green New Deal (GND). Though congress defeated the proposal, the policy changes envisioned within it have gained political momentum from states and municipalities. So much so, municipalities in the United States have decided to implement their own versions of the GND proposal. Throughout this paper, I analyze the components of three nationally recognized climate proposals that offer a unique approach to actualize the federal GND objectives: New York City's Climate Mobilization Act, Los Angeles's Green New Deal – Sustainable City pLAn, and Seattle's Green New Deal. From these proposals, I draw comparisons to Tempe's Climate Action plan to evaluate their efforts. Though this paper is primarily focused on analyzing the components of municipal GNDs across the nation, this paper also contends that municipalities' are a necessary complement to national efforts in mitigating climate change.
ContributorsMazariegos, Ashley (Author) / Fong, Benjamin Y. (Thesis director) / Calhoun, Craig (Committee member) / Economics Program in CLAS (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
168509-Thumbnail Image.png
Description
Observational evidence is mounting on the reduction of winter precipitation and an earlier snowmelt in the southwestern United States. It is unclear, however, how these changes, along with forest thinning, will impact water supplies due to complexities in the precipitation-streamflow transformation. In this study, I use the Triangulated Irregular Network-based

Observational evidence is mounting on the reduction of winter precipitation and an earlier snowmelt in the southwestern United States. It is unclear, however, how these changes, along with forest thinning, will impact water supplies due to complexities in the precipitation-streamflow transformation. In this study, I use the Triangulated Irregular Network-based Real-time Integrated Basin Simulator (tRIBS) to provide insight into the independent and combined effects of climate change and forest cover reduction on the hydrologic response in the Beaver Creek (~1100 km2) of central Arizona. Prior to these experiments, confidence in the hydrologic model is established using snow observations at two stations, two nested streamflow gauges, and estimates of spatially-distributed snow water equivalent over a long-term period (water years 2003-2018). Model forcings were prepared using station observations and radar rainfall estimates in combination with downscaling and bias correction techniques that account for the orographic controls on air temperature and precipitation. Model confidence building showed that tRIBS is able to capture well the variation in snow cover and streamflow during wet and dry years in the 16 year simulation period. The results from this study show that the climate change experiments increased average annual streamflow by 1.5% at +1°C of warming. However, a 28% decrease in streamflow occurs by +6°C of warming as evapotranspiration (ET) increases by 10%. Forest thinning shifted the warming threshold where ET increases reduce streamflow yield until +4°C of warming as compared to no forest thinning when this threshold occurs at +2°C. An average increase in streamflow of 12% occurs after forest thinning across all climate scenarios. While the snow covered area is unaffected by thinning, the volume of snowmelt increases and is linked to the higher water yield. These findings indicate that water managers can expect decreases in streamflow due to climate change but may be able to offset these impacts up to a warming threshold by thinning forested areas within the Beaver Creek.
ContributorsCederstrom, Charles Joshua (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Svoma, Bohumil (Committee member) / Arizona State University (Publisher)
Created2021
164501-Thumbnail Image.png
Description
Climate change has necessitated the transition from non-renewable energy sources such as coal, oil, and natural gas to renewable, low-carbon energy sources such as solar, wind, and hydroelectric. These energy sources, although much better equipped to reduce carbon-induced climate change, require materials that pollute the environment when mined and can

Climate change has necessitated the transition from non-renewable energy sources such as coal, oil, and natural gas to renewable, low-carbon energy sources such as solar, wind, and hydroelectric. These energy sources, although much better equipped to reduce carbon-induced climate change, require materials that pollute the environment when mined and can release toxic waste during processing and disposal. Critical minerals are used in low-carbon renewable energy, and they are subject to both the environmental issues that accompany regular mineral extraction as well as issues related to scarcity from geopolitical issues, trade policy, and geological rarity. Tellurium is a critical mineral produced primarily as a byproduct of copper and used in cadmium-telluride (CdTe) solar panels. As these solar panels become more common, the problems that arise with many critical minerals’ usage (pollution, unfair distribution, human health complications) become more apparent. Looking at these issues through an energy justice framework can help to ensure availability, sustainability, inter/intragenerational equity, and accountability, and this framework can provide a more nuanced understanding of the costs and the benefits that will accrue with the transition to low-carbon, renewable energy. Energy justice issues surrounding the extraction of critical minerals will become increasingly prevalent as more countries pledge to have a zero-carbon future.
ContributorsMaas, Samantha (Author) / Jalbert, Kirk (Thesis director) / Chester, Mikhail (Committee member) / Barrett, The Honors College (Contributor) / School of Public Affairs (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description
The "no compromise" gun rights movement, which advocates against any form of gun control and the absolute right to keep and bear arms, and white Christian nationalism, a cultural framework built on the belief that Christianity should serve as the foundation of the American government, have both recently come to

The "no compromise" gun rights movement, which advocates against any form of gun control and the absolute right to keep and bear arms, and white Christian nationalism, a cultural framework built on the belief that Christianity should serve as the foundation of the American government, have both recently come to the national political forefront. The connection between these two movements runs deep: white Christian nationalism informs the religious rhetoric of the "no compromise" movement. To understand why this is, the existing scholarship argues that white Christian nationalists advocate against gun control because they believe the Second Amendment is divinely inspired and that gun control does not address what they perceive to be a moral decline in the United States. However, these explanations are insufficient to fully grasp the inherent importance of guns and gun rights to white Christian nationalists. Therefore, I examine the specific roles that guns play in their worldview.
ContributorsMyers, Patrick (Author) / Young, Alexander (Thesis director) / Livingston, Lindsay (Committee member) / Barrett, The Honors College (Contributor) / School of Accountancy (Contributor)
Created2023-12