Matching Items (3)
Filtering by

Clear all filters

157656-Thumbnail Image.png
Description
To improve the resilience of complex, interdependent infrastructures, we need to better understand the institutions that manage infrastructures and the work that they do. This research demonstrates that a key aspect of infrastructure resilience is the adequate institutional management of infrastructures. This research analyzes the institutional dimension of infrastructure resilience

To improve the resilience of complex, interdependent infrastructures, we need to better understand the institutions that manage infrastructures and the work that they do. This research demonstrates that a key aspect of infrastructure resilience is the adequate institutional management of infrastructures. This research analyzes the institutional dimension of infrastructure resilience using sociotechnical systems theory and, further, investigates the critical role of institutions for infrastructure resilience using a thorough analysis of water and energy systems in Arizona.

Infrastructure is not static, but dynamic. Institutions play a significant role in designing, building, maintaining, and upgrading dynamic infrastructures. Institutions create the appearance of infrastructure stability while dynamically changing infrastructures over time, which is resilience work. The resilience work of different institutions and organizations sustains, recovers, adapts, reconfigures, and transforms the physical structure on short, medium, and long temporal scales.

To better understand and analyze the dynamics of sociotechnical infrastructure resilience, this research examines several case studies. The first is the social and institutional arrangements for the allocation of resources from Hoover Dam. This research uses an institutional analysis framework and draws on the institutional landscape of water and energy systems in Arizona. In particular, this research illustrates how institutions contribute to differing resilience work at temporal scales while fabricating three types of institutional threads: lateral, vertical, and longitudinal threads.

This research also highlights the importance of institutional interdependence as a critical challenge for improving infrastructure resilience. Institutional changes in one system can disrupt other systems’ performance. The research examines this through case studies that explore how changes to water governance impact the energy system in Arizona. Groundwater regulations affect the operation of thermoelectric power plants which withdraw groundwater for cooling. Generation turbines, droughts, and water governance are all intertwined via institutions in Arizona.

This research, finally, expands and applies the interdependence perspective to a case study of forest management in Arizona. In a nutshell, the perilous combination of chronic droughts and the engineering resilience perspective jeopardizes urban water and energy systems. Wildfires caused by dense forests have legitimized an institutional transition, from thickening forests to thinning trees in Arizona.
ContributorsGim, Changdeok (Author) / Miller, Clark A. (Thesis advisor) / Maynard, Andrew D. (Committee member) / Hirt, Paul W. (Committee member) / Arizona State University (Publisher)
Created2019
158835-Thumbnail Image.png
Description
Cities are in need of radical knowledge system innovations and designs in the age of the Anthropocene. Cities are complex sites of interactions across social, ecological, and technological dimensions. Cities are also experiencing rapidly changing and intractable environmental conditions. Given uncertain and incomplete knowledge of both future environmental conditions and

Cities are in need of radical knowledge system innovations and designs in the age of the Anthropocene. Cities are complex sites of interactions across social, ecological, and technological dimensions. Cities are also experiencing rapidly changing and intractable environmental conditions. Given uncertain and incomplete knowledge of both future environmental conditions and the outcomes of urban resilience efforts, today’s knowledge systems are unequipped to generate the knowledge and wisdom needed to act. As such, cities must modernize the knowledge infrastructure underpinning today’s complex urban systems. The principal objective of this dissertation is to make the case for, and guide, the vital knowledge system innovations that coastal cities need in order to build more resilient urban futures. Chapter 2 demonstrates the use of knowledge systems analysis as a tool to stress-test and upgrade the Federal Emergency Management Agency flood mapping knowledge system that drives flood resilience planning and decision-making in New York City. In Chapter 3, a conceptual framework is constructed for the design and analysis of knowledge co-production by integrating concepts across the co-production and urban social-ecological-technological systems literatures. In Chapter 4, the conceptual framework is used to analyze two case studies of knowledge co-production in the Miami Metropolitan Area to better inform decisions for how and when to employ co-production as a tool to achieve sustainability and resilience outcomes. In Chapter 5, six propositions are presented – derived from a synthesis of the literature and the three empirical cases – that knowledge professionals can employ to create, facilitate, and scale up knowledge system innovations: flatten knowledge hierarchies; create plural and positive visions of the future; construct knowledge co-production to achieve desired outcomes; acknowledge and anticipate the influence of power and authority; build anticipatory capacities to act under deep uncertainty; and identify and invest in knowledge innovations. While these six propositions apply to the context of coastal cities and flood resilience, most can also be useful to facilitate knowledge innovations to adapt to other complex and intractable environmental problems. Cities must move swiftly to create and catalyze knowledge system innovations given the scale of climate impacts and rapidly changing environmental conditions.
ContributorsHobbins, Robert Jonathan (Author) / Miller, Clark A. (Thesis advisor) / Meerow, Sara (Committee member) / Muñoz-Erickson, Tischa A (Committee member) / Arizona State University (Publisher)
Created2020
158601-Thumbnail Image.png
Description
Energy projects have the potential to provide critical services for human well-being and help eradicate poverty. However, too many projects fail because their approach oversimplifies the problem to energy poverty: viewing it as a narrow problem of access to energy services and technologies. This thesis presents an alternative paradigm for

Energy projects have the potential to provide critical services for human well-being and help eradicate poverty. However, too many projects fail because their approach oversimplifies the problem to energy poverty: viewing it as a narrow problem of access to energy services and technologies. This thesis presents an alternative paradigm for energy project development, grounded in theories of socio-energy systems, recognizing that energy and poverty coexist as a social, economic, and technological problem.

First, it shows that social, economic, and energy insecurity creates a complex energy-poverty nexus, undermining equitable, fair, and sustainable energy futures in marginalized communities. Indirect and access-based measures of energy poverty are a mismatch for the complexity of the energy-poverty nexus. The thesis, using the concept of social value of energy, develops a methodology for systematically mapping benefits, burdens and externalities of the energy system, illustrated using empirical investigations in communities in Nepal, India, Brazil, and Philippines. The thesis argues that key determinants of the energy-poverty nexus are the functional and economic capabilities of users, stressors and resulting thresholds of capabilities characterizing the energy and poverty relationship. It proposes ‘energy thriving’ as an alternative standard for evaluating project outcomes, requiring energy systems to not only remedy human well-being deficits but create enabling conditions for discovering higher forms of well-being.

Second, a novel, experimental approach to sustainability interventions is developed, to improve the outcomes of energy projects. The thesis presents results from a test bed for community sustainability interventions established in the village of Rio Claro in Brazil, to test innovative project design strategies and develop a primer for co-producing sustainable solutions. The Sustainable Rio Claro 2020 initiative served as a longitudinal experiment in participatory collective action for sustainable futures.

Finally, results are discussed from a collaborative project with grassroots practitioners to understand the energy-poverty nexus, map the social value of energy and develop energy thriving solutions. Partnering with local private and non-profit organizations in Uganda, Bolivia, Nepal and Philippines, the project evaluated and refined methods for designing and implementing innovative energy projects using the theoretical ideas developed in the thesis, subsequently developing a practitioner toolkit for the purpose.
ContributorsBiswas, Saurabh (Author) / Miller, Clark A. (Thesis advisor) / Wiek, Arnim (Committee member) / Janssen, Marcus A (Committee member) / Arizona State University (Publisher)
Created2020