Matching Items (14)
Filtering by

Clear all filters

152208-Thumbnail Image.png
Description
Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.
ContributorsChristian, Keith (Author) / Pendyala, Ram M. (Thesis advisor) / Chester, Mikhail (Committee member) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2013
151747-Thumbnail Image.png
Description
Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt

Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt binders by volatilization and oxidation due to high production temperature occur during early stages of pavement life and are known as Short Term Aging (STA). Elevated temperatures and increased exposure time to elevated temperatures causes increased STA of asphalt. The objective of this research was to investigate how elevated mixing temperatures and exposure time to elevated temperatures affect aging and stiffening of binders, thus influencing properties of the asphalt mixtures. The study was conducted in two stages. The first stage evaluated STA effect of asphalt binders. It involved aging two Performance Graded (PG) virgin asphalt binders, PG 76-16 and PG 64-22 at two different temperatures and durations, then measuring their viscosities. The second stage involved evaluating the effects of elevated STA temperature and time on properties of the asphalt mixtures. It involved STA of asphalt mixtures produced in the laboratory with the PG 64-22 binder at mixing temperatures elevated 25OF above standard practice; STA times at 2 and 4 hours longer than standard practices, and then compacted in a gyratory compactor. Dynamic modulus (E*) and Indirect Tensile Strength (IDT) were measured for the aged mixtures for each temperature and duration to determine the effect of different aging times and temperatures on the stiffness and fatigue properties of the aged asphalt mixtures. The binder test results showed that in all cases, there was increased viscosity. The results showed the highest increase in viscosity resulted from increased aging time. The results also indicated that PG 64-22 was more susceptible to elevated STA temperature and extended time than the PG 76-16 binders. The asphalt mixture test results confirmed the expected outcome that increasing the STA and mixing temperature by 25oF alters the stiffness of mixtures. Significant change in the dynamic modulus mostly occurred at four hour increase in STA time regardless of temperature.
ContributorsLolly, Rubben (Author) / Kaloush, Kamil (Thesis advisor) / Bearup, Wylie (Committee member) / Zapata, Claudia (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152795-Thumbnail Image.png
Description

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population with an array of socio-demographic and socio-economic attributes has drawn remarkable attention due to privacy and cost constraints in collecting and disclosing full scale data. Although, there has been enormous progress in producing synthetic population, there has been less progress in the development of population evolution modeling arena to forecast future year population. The objective of this dissertation is to develop a well-structured full-fledged demographic evolution modeling system, capturing migration dynamics and evolution of person level attributes, introducing the concept of new household formations and apprehending the dynamics of household level long-term choices over time. A comprehensive study has been conducted on demography, sociology, anthropology, economics and transportation engineering area to better understand the dynamics of evolutionary activities over time and their impacts in travel behavior. This dissertation describes the methodology and the conceptual framework, and the development of model components. Demographic, socio-economic, and land use data from American Community Survey, National Household Travel Survey, Census PUMS, United States Time Series Economic Dynamic data and United States Center for Disease Control and Prevention have been used in this research. The entire modeling system has been implemented and coded using programming language to develop the population evolution module named `PopEvol' into a computer simulation environment. The module then has been demonstrated for a portion of Maricopa County area in Arizona to predict the milestone year population to check the accuracy of forecasting. The module has also been used to evolve the base year population for next 15 years and the evolutionary trend has been investigated.

ContributorsPaul, Sanjay (Author) / Pendyala, Ram M. (Thesis advisor) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2014
153001-Thumbnail Image.png
Description
Traffic congestion is a major externality in modern transportation systems with negative economic, environmental and social impacts. Freeway bottlenecks are one of the key elements besides the demand for travel by automobiles that determine the extent of congestion. The primary objective of this research is to provide a better understanding

Traffic congestion is a major externality in modern transportation systems with negative economic, environmental and social impacts. Freeway bottlenecks are one of the key elements besides the demand for travel by automobiles that determine the extent of congestion. The primary objective of this research is to provide a better understanding of factors for variations in bottleneck discharge rates. Specifically this research seeks to (i) develop a methodology comparable to the rigorous methods to identify bottlenecks and measure capacity drop and its temporal (day to day) variations in a region, (ii) understand the variations in discharge rate of a freeway weaving bottleneck with a HOV lane and (iii) understand the relationship between lane flow distribution and discharge rate on a weaving bottleneck resulted from a lane drop and a busy off-ramp. In this research, a methodology has been developed to de-noise raw data using Discrete Wavelet Transforms (DWT). The de-noised data is then used to precisely identify bottleneck activation and deactivation times, and measure pre-congestion and congestion flows using Continuous Wavelet Transforms (CWT). To this end a methodology which could be used efficiently to identify and analyze freeway bottlenecks in a region in a consistent, reproducible manner was developed. Using this methodology, 23 bottlenecks have been identified in the Phoenix metropolitan region, some of which result in long queues and large delays during rush-hour periods. A study of variations in discharge rate of a freeway weaving bottleneck with a HOV lane showed that the bottleneck discharge rate diminished by 3-25% upon queue formations, however, the discharge rate recovered shortly thereafter upon high-occupancy-vehicle (HOV) lane activation and HOV lane flow distribution (LFD) has a significant effect on the bottleneck discharge rate: the higher the HOV LFD, the lower the bottleneck discharge rate. The effect of lane flow distribution and its relationship with bottleneck discharge rate on a weaving bottleneck formed by a lane drop and a busy off-ramp was studied. The results showed that the bottleneck discharge rate and lane flow distribution are linearly related and higher utilization of the median lane results in higher bottleneck discharge rate.
ContributorsKandala, Srinivasa Srivatsav (Author) / Ahn, Soyoung (Thesis advisor) / Pendyala, Ram (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2014
153149-Thumbnail Image.png
Description

Institutions of higher education, particularly those with large student enrollments, constitute special generators that contribute in a variety of ways to the travel demand in a region. Despite the importance of university population travel characteristics in understanding and modeling activity-travel patterns and mode choice behavior in a region, such populations

Institutions of higher education, particularly those with large student enrollments, constitute special generators that contribute in a variety of ways to the travel demand in a region. Despite the importance of university population travel characteristics in understanding and modeling activity-travel patterns and mode choice behavior in a region, such populations remain under-studied. As metropolitan planning organizations continue to improve their regional travel models by incorporating processes and parameters specific to major regional special generators, university population travel characteristics need to be measured and special submodels that capture their behavior need to be developed. The research presented herein begins by documenting the design and administration of a comprehensive university student online travel and mode use survey that was administered at Arizona State University (ASU) in the Greater Phoenix region of Arizona. The dissertation research offers a detailed statistical analysis of student travel behavior for different student market segments. A framework is then presented for incorporating university student travel into a regional travel demand model. The application of the framework to the ASU student population is documented in detail. A comprehensive university student submodel was estimated and calibrated for integration with the full regional travel model system. Finally, student attitudes toward travel are analyzed and used as explanatory factors in multinomial logit models of mode choice. This analysis presents an examination of the extent to which attitudes play a role in explaining mode choice behavior of university students in an urban setting. The research provides evidence that student travel patterns vary substantially from those of the rest of the population, and should therefore be considered separately when forecasting travel demand and formulating transport policy in areas where universities are major contributors to regional travel.

ContributorsVolosin, Sarah Elia (Author) / Pendyala, Ram M. (Thesis advisor) / Kaloush, Kamil (Committee member) / Konduri, Karthik C (Committee member) / Arizona State University (Publisher)
Created2014
153239-Thumbnail Image.png
Description

Real-time information systems are being used widely around the world to mitigate the adverse impacts of congestion and events that contribute to network delay. It is important that transportation modeling tools be able to accurately model the impacts of real-time information provision. Such planning tools allow the simulation of the

Real-time information systems are being used widely around the world to mitigate the adverse impacts of congestion and events that contribute to network delay. It is important that transportation modeling tools be able to accurately model the impacts of real-time information provision. Such planning tools allow the simulation of the impacts of various real-time information systems, and the design of traveler information systems that can minimize impacts of congestion and network disruptions. Such modeling tools would also be helpful in planning emergency response services as well as evacuation scenarios in the event of a natural disaster. Transportation modeling tools currently in use are quite limited in their ability to model the impacts of real-time information provision on travel demand and route choices. This dissertation research focuses on enhancing a previously developed integrated transportation modeling system dubbed SimTRAVEL (Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land) to incorporate capabilities that allow the simulation of the impacts of real-time traveler information systems on activity-travel demand. The first enhancement made to the SimTRAVEL framework involves the ability to reflect the effects of providing information on prevailing (as opposed to historical) network conditions on activity-travel behavior choices. In addition, the model system is enhanced to accommodate multiple user information classes (pre-trip and enroute) simultaneously. The second major contribution involves advancing the methodological framework to model enroute decision making processes where a traveler may alter his or her travel choices (such as destination choice) while enroute to an intended destination. Travelers who are provided up-to-date network information may choose to alter their destination in response to congested conditions, or completely abandon and reschedule an activity that offers some degree of flexibility. In this dissertation research, the model framework is developed and an illustrative demonstration of the capabilities of the enhanced model system is provided using a subregion of the Greater Phoenix metropolitan area in Arizona. The results show that the model is able to simulate adjustments in travel choices that may result from the introduction of real-time traveler information. The efficacy of the integrated travel model system is also demonstrated through the application of the enhanced model system to evaluate transportation policy scenarios.

ContributorsYou, Daehyun (Author) / Pendyala, Ram M. (Thesis advisor) / Kaloush, Kamil (Committee member) / Konduri, Karthik C (Committee member) / Arizona State University (Publisher)
Created2014
150365-Thumbnail Image.png
Description

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture,

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture, and the second section used a chemical-based WMA admixture. The rest of the project included control hot mix asphalt (HMA) mixture. The evaluation included testing of field-core specimens and laboratory compacted specimens. The laboratory specimens were compacted at two different temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan included four laboratory tests: the dynamic modulus (E*), indirect tensile strength (IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg Wheel-track Test. The dynamic modulus E* results of the field cores at 70 °F showed similar E* values for control HMA and foaming-based WMA mixtures; the E* values of the chemical-based WMA mixture were relatively higher. IDT test results of the field cores had comparable finding as the E* results. For the laboratory compacted specimens, both E* and IDT results indicated that decreasing the compaction temperatures from 310 °F to 270 °F did not have any negative effect on the material strength for both WMA mixtures; while the control HMA strength was affected to some extent. It was noticed that E* and IDT results of the chemical-based WMA field cores were high; however, the laboratory compacted specimens results didn't show the same tendency. The moisture sensitivity findings from TSR test disagreed with those of Hamburg test; while TSR results indicated relatively low values of about 60% for all three mixtures, Hamburg test results were quite excellent. In general, the results of this study indicated that both WMA mixes can be best evaluated through field compacted mixes/cores; the results of the laboratory compacted specimens were helpful to a certain extent. The dynamic moduli for the field-core specimens were higher than for those compacted in the laboratory. The moisture damage findings indicated that more investigations are needed to evaluate moisture damage susceptibility in field.

ContributorsAlossta, Abdulaziz (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew W. (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2011
150527-Thumbnail Image.png
Description
The application of fibers and other materials in asphalt mixes has been studied and applied over the past five decades in order to improve pavement performance around the world. This thesis highlights the characteristics and performance properties of modified asphalt mixes using a blend of polypropylene and aramid fibers, The

The application of fibers and other materials in asphalt mixes has been studied and applied over the past five decades in order to improve pavement performance around the world. This thesis highlights the characteristics and performance properties of modified asphalt mixes using a blend of polypropylene and aramid fibers, The main objective of this study was to evaluate the effect of adding different fiber dosages on the laboratory performance of both asphalt binder and mixture. The laboratory study was conducted on sixteen different dosages and blends of the fibers, with various combinations of polypropylene and aramid, using binder tests as well as hot mix asphalt tests. The binder tests included: penetration, softing point, and Brookfield viscosity tests. The asphalt mixture tests included the dynamic modulus, and indirect tensile strength. The binder test results indicated that the best viscosity - temperature susceptibility performance would be from the blend of three dosages of polypropylene and one dosage of aramid, the dynamic modulus test results also confirmed this finding. Overall, in almost every case, the addition of fibers resulted in an increase in mixture stiffness regardless of fiber content. From the indirect tensile strength results, the polypropylene fibers had less of an effect on post peak failure than the aramid fibers. Overall, the aramid fibers yielded better results than the polypropylene fibers. This study has important implications for the future of pavement design and the prospect of using optimal dosages of polypropylene and aramid fibers in further research to further determine their long-term performance and characteristics used in real world applications.
ContributorsAlrajhi, Ashraf (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Witzcak, Matthew (Committee member) / Arizona State University (Publisher)
Created2012
150506-Thumbnail Image.png
Description
The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to be accounted to accurately and comprehensively model the urban system.

The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to be accounted to accurately and comprehensively model the urban system. Location choices affect household activity-travel behavior, household activity-travel behavior affects network level of service (performance), and network level of service, in turn, affects land use and activity-travel behavior. The development of conceptual designs and operational frameworks that represent such complex inter-relationships in a consistent fashion across behavioral units, geographical entities, and temporal scales has proven to be a formidable challenge. In this research, an integrated microsimulation modeling framework called SimTRAVEL (Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land) that integrates the component model systems in a behaviorally consistent fashion, is presented. The model system is designed such that the activity-travel behavior model and the dynamic traffic assignment model are able to communicate with one another along continuous time with a view to simulate emergent activity-travel patterns in response to dynamically changing network conditions. The dissertation describes the operational framework, presents the modeling methodologies, and offers an extensive discussion on the advantages that such a framework may provide for analyzing the impacts of severe network disruptions on activity-travel choices. A prototype of the model system is developed and implemented for a portion of the Greater Phoenix metropolitan area in Arizona to demonstrate the capabilities of the model system.
ContributorsKonduri, Karthik Charan (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Kuby, Michael (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2012
150282-Thumbnail Image.png
Description
The structural design of pavements in both highways and airfields becomes complex when one considers environmental effects and ground water table variation. Environmental effects have been incorporated on the new Mechanistic-Empirical Pavement Design Guide (MEPDG) but little has been done to incorporate environmental effects on airfield design. This work presents

The structural design of pavements in both highways and airfields becomes complex when one considers environmental effects and ground water table variation. Environmental effects have been incorporated on the new Mechanistic-Empirical Pavement Design Guide (MEPDG) but little has been done to incorporate environmental effects on airfield design. This work presents a developed code produced from this research study called ZAPRAM, which is a mechanistically based pavement model based upon Limiting Strain Criteria in airfield HMA pavement design procedures. ZAPRAM is capable of pavement and airfield design analyses considering environmental effects. The program has been coded in Visual Basic and implemented in an event-driven, user-friendly educational computer program, which runs in Excel environment. Several studies were conducted in order to insure the validity of the analysis as well as the efficiency of the software. The first study yielded the minimum threshold number of computational points the user should use at a specific depth within the pavement system. The second study was completed to verify the correction factor for the Odemark's transformed thickness equation. Default correction factors were included in the code base on a large comparative study between Odemark's and MLET. A third study was conducted to provide a comparison of flexible airfield pavement design thicknesses derived from three widely accepted design procedures used in practice today: the Asphalt Institute, Shell Oil, and the revised Corps of Engineering rutting failure criteria to calculate the thickness requirements necessary for a range of design input variables. The results of the comparative study showed that there is a significant difference between the pavement thicknesses obtained from the three design procedures, with the greatest deviation found between the Shell Oil approach and the other two criteria. Finally, a comprehensive sensitivity study of environmental site factors and the groundwater table depth upon flexible airfield pavement design and performance was completed. The study used the newly revised USACE failure criteria for subgrade shear deformation. The methodology utilized the same analytical methodology to achieve real time environmental effects upon unbound layer modulus, as that used in the new AASHTO MEPDG. The results of this effort showed, for the first time, the quantitative impact of the significant effects of the climatic conditions at the design site, coupled with the importance of the depth of the groundwater table, on the predicted design thicknesses. Significant cost savings appear to be quite reasonable by utilizing principles of unsaturated soil mechanics into the new airfield pavement design procedure found in program ZAPRAM.
ContributorsSalim, Ramadan A (Author) / Zapata, Claudia (Thesis advisor) / Witczak, Matthew (Thesis advisor) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2011