Matching Items (30)
Filtering by

Clear all filters

153164-Thumbnail Image.png
Description
Alternative Project Delivery Methods (APDMs), namely Design Build (DB) and Construction Manager at Risk (CMAR), grew out of the need to find a more efficient project delivery approach than the traditional Design Bid Build (DBB) form of delivery. After decades of extensive APDM use, there have been many studies focused

Alternative Project Delivery Methods (APDMs), namely Design Build (DB) and Construction Manager at Risk (CMAR), grew out of the need to find a more efficient project delivery approach than the traditional Design Bid Build (DBB) form of delivery. After decades of extensive APDM use, there have been many studies focused on the use of APDMs and project outcomes. Few of these studies have reached a level of statistical significance to make conclusive observations about APDMs. This research effort completes a comprehensive study for use in the horizontal transportation construction market, providing a better basis for decisions on project delivery method selection, improving understanding of best practices for APDM use, and reporting outcomes from the largest collection of APDM project data to date. The study is the result of an online survey of project owners and design teams from 17 states representing 83 projects nationally. Project data collected represents almost six billion US dollars. The study performs an analysis of the transportation APDM market and answers questions dealing with national APDM usage, motivators for APDM selection, the relation of APDM to pre-construction services, and the use of industry best practices. Top motivators for delivery method selection: the project schedule or the urgency of the project, the ability to predict and control cost, and finding the best method to allocate risk, as well as other factors were identified and analyzed. Analysis of project data was used to compare to commonly held assumptions about the project delivery methods, confirming some assumptions and refuting others. Project data showed that APDM projects had the lowest overall cost growth. DB projects had higher schedule growth. CMAR projects had low design schedule growth but high construction schedule growth. DBB showed very little schedule growth and the highest cost growth of the delivery methods studied. Best practices in project delivery were studied: team alignment, front end planning, and risk assessment were identified as practices most critical to project success. The study contributes and improves on existing research on APDM project selection and outcomes and fills many of the gaps in research identified by previous research efforts and industry leaders.
ContributorsBingham, Evan Dale (Author) / Gibson Jr., G. Edward (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2014
153242-Thumbnail Image.png
Description
Over the last two decades, Alternative Project Delivery Methods (APDM), such as Design-Build (DB), have become more popular in the construction industry, specifically in the U.S., and the competition for APDM projects has risen among construction companies. The Engineering News Record (ENR) magazine analyzes DB firms and publishes the list

Over the last two decades, Alternative Project Delivery Methods (APDM), such as Design-Build (DB), have become more popular in the construction industry, specifically in the U.S., and the competition for APDM projects has risen among construction companies. The Engineering News Record (ENR) magazine analyzes DB firms and publishes the list of the top 100 every year. According to ENR articles and many scientific papers, the implementation of DB method has grown drastically over the last decade, however, information about growth trends depending on firm size and segment is lacking. Also missing is knowledge the future market trends over the next five years. Furthermore, public agencies and DB firms may be worried that DB projects do not distribute wealth equally among DB firms. Using the top 100 firms deemed representative of the DB market, the author has divided the market into volumes based on rankings to analyze the total DB market revenue growth. A comparison between international and domestic revenues indicated that the top five DB firms have 64% more involvement in the international market compared to the domestic market. Furthermore, while the research shows increasing market share only for the top five firms, the author has found that (1) a large portion of their market share is due to a large growth in their international market, and (2) revenues for all volumes of the DB market have increased. Moreover, regression and time series analyses allow for the forecasting of the DB market growth, which the author anticipate to move from about $100B to about $150B in 2020.
ContributorsVashani, Hossein (Author) / El Asmar, Mounir (Thesis advisor) / Ernzen, James (Committee member) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2014
153951-Thumbnail Image.png
Description
Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These

Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These challenges can be addressed by integrating sustainability grand challenges into engineering curriculum.

Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability grand challenges throughout existing courses. Neither method has been assessed in the literature.

This thesis aimed to develop sustainability modules, to create methods for evaluating the modules’ effectiveness on student cognitive and affective outcomes, to create methods for evaluating students’ cumulative sustainability knowledge, and to evaluate the stand-alone course method to integrate sustainability grand challenges into engineering curricula via active and experiential learning.

The Sustainable Metrics Module for teaching sustainability concepts and engaging and motivating diverse sets of students revealed that the activity portion of the module had the greatest impact on learning outcome retention.

The Game Design Module addressed methods for assessing student mastery of course content with student-developed games indicated that using board game design improved student performance and increased student satisfaction.

Evaluation of senior design capstone projects via novel comprehensive rubric to assess sustainability learned over students’ curriculum revealed that students’ performance is primarily driven by their instructor’s expectations. The rubric provided a universal tool for assessing students’ sustainability knowledge and could also be applied to sustainability-focused projects.

With this in mind, engineering educators should pursue modules that connect sustainability grand challenges to engineering concepts, because student performance improves and students report higher satisfaction. Instructors should utilize pedagogies that engage diverse students and impact concept retention, such as active and experiential learning. When evaluating the impact of sustainability in the curriculum, innovative assessment methods should be employed to understand student mastery and application of course concepts and the impacts that topics and experiences have on student satisfaction.
ContributorsAntaya, Claire Louise (Author) / Landis, Amy E. (Thesis advisor) / Parrish, Kristen (Thesis advisor) / Bilec, Melissa M (Committee member) / Besterfield-Sacre, Mary E (Committee member) / Allenby, Braden R. (Committee member) / Arizona State University (Publisher)
Created2015
154130-Thumbnail Image.png
Description
Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed

Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed to achieve a superior performance in several areas including energy consumption and indoor environmental quality (IEQ). The primary objectives of this study are to investigate the performance of LEED certified facilities in terms of energy consumption and occupant satisfaction with IEQ, and introduce a framework to assess the performance of LEED certified buildings.

This thesis attempts to achieve the research objectives by examining the LEED certified buildings on the Arizona State University (ASU) campus in Tempe, AZ, from two complementary perspectives: the Macro-level and the Micro-level. Heating, cooling, and electricity data were collected from the LEED-certified buildings on campus, and their energy use intensity was calculated in order to investigate the buildings' actual energy performance. Additionally, IEQ occupant satisfaction surveys were used to investigate users' satisfaction with the space layout, space furniture, thermal comfort, indoor air quality, lighting level, acoustic quality, water efficiency, cleanliness and maintenance of the facilities they occupy.

From a Macro-level perspective, the results suggest ASU LEED buildings consume less energy than regional counterparts, and exhibit higher occupant satisfaction than national counterparts. The occupant satisfaction results are in line with the literature on LEED buildings, whereas the energy results contribute to the inconclusive body of knowledge on energy performance improvements linked to LEED certification. From a Micro-level perspective, data analysis suggest an inconsistency between the LEED points earned for the Energy & Atmosphere and IEQ categories, on one hand, and the respective levels of energy consumption and occupant satisfaction on the other hand. Accordingly, this study showcases the variation in the performance results when approached from different perspectives. This contribution highlights the need to consider the Macro-level and Micro-level assessments in tandem, and assess LEED building performance from these two distinct but complementary perspectives in order to develop a more comprehensive understanding of the actual building performance.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2015
156235-Thumbnail Image.png
Description
High performing and sustainable building certification bodies continue to update their requirements, leading to scope modification of certifications, and an increasing number of viable sources of environmental information for building materials. In conjunction, the Architecture, Engineering, and Construction (AEC) industry is seeing increasing demand for such environmental product information. The

High performing and sustainable building certification bodies continue to update their requirements, leading to scope modification of certifications, and an increasing number of viable sources of environmental information for building materials. In conjunction, the Architecture, Engineering, and Construction (AEC) industry is seeing increasing demand for such environmental product information. The industry and certifications are moving from using single attribute environmental information about building materials to lifecycle based information to inform their design decisions.

This dissertation seeks to understand the current practices, and then focus on strategies to effectively utilize newer sources of environmental product information in high performance building design. The first phase of research used a survey of 119 U.S.-based AEC practitioners experienced in certified sustainable building projects to understand how the numerous sources of environmental information are currently used in the building design process. The second phase asked two focus groups of experienced AEC professionals to develop a Message Sequence Chart (MSC) that documents the conceptual design process for a recently designed building. Then, the focus group participants integrated a new sustainability requirement for building materials, Environmental Product Declarations (EPDs), into their project, and documented the adjustments to their specific design process in a second, modified MSC highlighting potential drivers for inclusion of EPDs. Finally, the author examines the broader applicability of these drivers through case studies. Specifically, 19 certified high-performance building (HPB) case studies, for reviewing the impact of three different potential drivers on the design team’s approach to considering environmental product information during conceptual design of a HPB, as well as the projects certification level.

LEED certification has changed the design of buildings, and the new information sources for building materials will inform the way the industry selects building materials. Meanwhile, these information sources will need to expand to include a growing number of products, and potentially more data as the industry’s understanding of the impacts of building materials develops. This research expands upon previous research on LEED certification to illustrates that owner engagement and commitment to the HPB process is a critical success factor for the use of environmental product information about building materials.
ContributorsBurke, Rebekah (Author) / Parrish, Kristen (Thesis advisor) / Gibson, G. Edward (Committee member) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2018
156897-Thumbnail Image.png
Description
The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative project delivery methods (APDM) are on the rise and touting

The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative project delivery methods (APDM) are on the rise and touting the benefits of reduced project schedule and cost. The main purpose of this study is to conduct a qualitative and quantitative performance evaluation to assess the current impact of APDM in the water and wastewater industry. A national survey was conducted targeting completed water and wastewater treatment plant projects. Responses were obtained from 75 utilities and constructors that either completed their projects using DBB, construction manager at risk (CMAR), or design-build (DB). Data analysis revealed that CMAR and DB statistically outperformed DBB in terms of project speed and intensity. Performance metrics such as cost growth, schedule growth, unit cost, factors influencing project delivery method selection, scope changes, warranty and latent defects, and several others are also evaluated. The main contribution of this study was that it was able to show that for the same project cost, water and wastewater treatment plants could be delivered under a faster schedule and with higher quality through the utilization of APDM.
ContributorsFeghaly, Jeffrey (Author) / El Asmar, Mounir (Thesis advisor) / Ariaratnam, Samuel (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2018
157081-Thumbnail Image.png
Description
The demand for new highway infrastructure, the need to repair aging infrastructure, and the drive to optimize public expenditures on infrastructure have led transportation agencies toward alternative contracting methods (ACMs) such as design-build (DB) and construction manager/general contractor (CM/GC). U.S. transportation agencies have substantial experience with traditional design-bid-build delivery. To

The demand for new highway infrastructure, the need to repair aging infrastructure, and the drive to optimize public expenditures on infrastructure have led transportation agencies toward alternative contracting methods (ACMs) such as design-build (DB) and construction manager/general contractor (CM/GC). U.S. transportation agencies have substantial experience with traditional design-bid-build delivery. To promote ACMs, the Federal Highway Administration and the National Cooperative Highway Research Program (NCRHP) have published ACM guidance documents. However, the published material and research tend to focus on pre-award activities. The need for guidance on ACM post-award activities is confirmed in NCHRP’s request for a guidebook focusing on ACM contract administration (NCHRP 2016).

This dissertation fills the crucial knowledge gap in contract administration functions and tools for DB and CM/GC highway project delivery. First, this research identifies and models contract administration functions in DBB, CM/GC, and DB using integrated definition modeling (IDEF0). Second, this research identifies and analyzes DB and CM/GC tools for contract administration by conducting 30 ACM project case studies involving over 90 ACM practitioners. Recommendations on appropriate use regarding project phase, complexity, and size were gathered from 16 ACM practitioners. Third, the alternative technical concepts tool was studied. Data from 30 DB projects was analyzed to explore the timing of DB procurement and DB initial award performance in relation to the project influence curve. Types of innovations derived from ATCs are discussed. Considerable industry input at multiple stages grounds this research in professional practice.

Results indicate that the involvement of the contractor during the design phase for both DB and CM/GC delivery creates unique contract administration functions that need unique tools. Thirty-six DB and CM/GC tools for contract administration are identified with recommendations for effective implementation. While strong initial award performance is achievable in DB projects, initial award performance in this sample of projects is only loosely tied to the level of percent base design at procurement. Cost savings typically come from multiple ATCs, and innovations tend to be incremental rather than systemic, disruptive, or radical. Opportunity for innovation on DB highway projects is influenced by project characteristics and engaging the DB entity after pre-project planning.
ContributorsPapajohn, Dean (Author) / El Asmar, Mounir (Thesis advisor) / Gibson, G. Edward (Committee member) / Bearup, Wylie (Committee member) / Molenaar, Keith R. (Committee member) / Arizona State University (Publisher)
Created2019
157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy”

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

ContributorsAldaaja, Mohammad (Author) / El Asmar, Mounir (Thesis advisor) / Buch, Rajesh (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2019
157056-Thumbnail Image.png
Description
Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success

Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success of large industrial

projects. The primary objective of this dissertation focuses on FEED maturity and accuracy

and its impact on project performance. The author was a member of the Construction

Industry Institute (CII) Research Team (RT) 331, which was tasked to develop the FEED

Maturity and Accuracy Total Rating System (FEED MATRS), pronounced “feed matters.”

This dissertation provides the motivation, methodology, data analysis, research findings

(which include significant correlations between the maturity and accuracy of FEED and

project performance), applicability and contributions to academia and industry. A scientific

research methodology was employed in this dissertation that included a literature review,

focus groups, an industry survey, data collection workshops, in-progress projects testing,

and statistical analysis of project performance. The results presented in this dissertation are

based on input from 128 experts in 57 organizations and a data sample of 33 completed

and 11 on-going large industrial projects representing over $13.9 billion of total installed

cost. The contributions of this work include: (1) developing a tested FEED definition for

the large industrial projects sector, (2) determining the industry’s state of practice for

measuring FEED deliverables, (3) developing an objective and scalable two-dimensional

method to measure FEED maturity and accuracy, and (4) quantifying that projects with

high FEED maturity and accuracy outperformed projects with low FEED maturity and

accuracy by 24 percent in terms of cost growth, in relation to the approved budget.
ContributorsYussef, Abdulrahman (Author) / Gibson, Jr., G. Edward (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Wiezel, Avi (Committee member) / Arizona State University (Publisher)
Created2019
134315-Thumbnail Image.png
Description
Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived

Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived as being interchangeable. This paper evaluates Sustainable Materials Management (SMM) and Circular Economy (CE) individually and in comparison to see how truly different these frameworks are from one another. This comparison is then extended into a theoretical walk-through of an SMM treatment of concrete pavement in contrast with a CE treatment. With concrete being a ubiquitous in the world's buildings and roads, as well as being a major constituent of Construction & Demolition waste generated, its analysis is applicable to a significant portion of the world's material flow. The ultimate test of differentiation between SMM and CE would ask: 1) If SMM principles guided action, would the outcomes be aligned with or at odds with CE principles? and conversely 2) If CE principles guided action, would the outcomes be aligned with or at odds with SMM principles? Using concrete pavement as an example, this paper seeks to determine whether or not Sustainable Materials Management and Circular Economy are simply different roads leading to the same destination.
ContributorsAbdul-Quadir, Anisa (Author) / Kelman, Candice (Thesis director) / Buch, Rajesh (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05