Matching Items (23)
Filtering by

Clear all filters

157454-Thumbnail Image.png
Description
The Autonomous Vehicle (AV), also known as self-driving car, promises to be a game changer for the transportation industry. This technology is predicted to drastically reduce the number of traffic fatalities due to human error [21].

However, road driving at any reasonable speed involves some risks. Therefore, even with high-tech

The Autonomous Vehicle (AV), also known as self-driving car, promises to be a game changer for the transportation industry. This technology is predicted to drastically reduce the number of traffic fatalities due to human error [21].

However, road driving at any reasonable speed involves some risks. Therefore, even with high-tech AV algorithms and sophisticated sensors, there may be unavoidable crashes due to imperfection of the AV systems, or unexpected encounters with wildlife, children and pedestrians. Whenever there is a risk involved, there is the need for an ethical decision to be made [33].

While ethical and moral decision-making in humans has long been studied by experts, the advent of artificial intelligence (AI) also calls for machine ethics. To study the different moral and ethical decisions made by humans, experts may use the Trolley Problem [34], which is a scenario where one must pull a switch near a trolley track to redirect the trolley to kill one person on the track or do nothing, which will result in the deaths of five people. While it is important to take into account the input of members of a society and perform studies to understand how humans crash during unavoidable accidents to help program moral and ethical decision-making into self-driving cars, using the classical trolley problem is not ideal, as it is unrealistic and does not represent moral situations that people face in the real world.

This work seeks to increase the realism of the classical trolley problem for use in studies on moral and ethical decision-making by simulating realistic driving conditions in an immersive virtual environment with unavoidable crash scenarios, to investigate how drivers crash during these scenarios. Chapter 1 gives an in-depth background into autonomous vehicles and relevant ethical and moral problems; Chapter 2 describes current state-of-the-art online tools and simulators that were developed to study moral decision-making during unavoidable crashes. Chapters 3 focuses on building the simulator and the design of the crash scenarios. Chapter 4 describes human subjects experiments that were conducted with the simulator and their results, and Chapter 5 provides conclusions and avenues for future work.
ContributorsKankam, Immanuella (Author) / Berman, Spring (Thesis advisor) / Johnson, Kathryn (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2019
156839-Thumbnail Image.png
Description
Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the

Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the form factor of a UK metric brick sized at 215 mm × 102.5 mm × 65 mm for the experimental power output using a copper/copper(II) (Cu/Cu2+) based aqueous electrode. In this study the thermogalvanic brick uses a 0.7 M CuSO4 + 0.1 M H2SO4 aqueous electrolyte with copper electrodes as two of the walls. The other walls of the thermogalvanic brick are made of 5.588 mm (0.22 in) thick acrylic sheet. Internal to the brick, a 0.2 volume fraction minimal surface Schwartz diamond (Schwartz D) structure made of ABS, Polycarbonate-ABS (PCABS), and Polycarbonate-Carbon Fiber (PCCF) was tested to see the effects on the power output of the thermogalvanic brick. By changing the size of the thermogalvanic cell into that of a brick will allow this thermogalvanic cell to become the literal building blocks of green buildings. The thermogalvanic brick was tested by applying a constant power to the strip heater attached to the hot side of the brick, resulting in various ∆T values between 8◦C and 15◦C depending on the material of Schwartz D inside. From this, it was found that a single Cu/Cu2+ thermogalvanic brick containing the PCCF or PCABS Schwartz D performed equivalently well at a 163.8% or 164.9%, respectively, higher normalized power density output than the control brick containing only electrolyte solution.
ContributorsLee, William J. (Author) / Phelan, Patrick (Thesis advisor) / El Asmar, Mounir (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2018
157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy”

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

ContributorsAldaaja, Mohammad (Author) / El Asmar, Mounir (Thesis advisor) / Buch, Rajesh (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2019
134315-Thumbnail Image.png
Description
Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived

Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived as being interchangeable. This paper evaluates Sustainable Materials Management (SMM) and Circular Economy (CE) individually and in comparison to see how truly different these frameworks are from one another. This comparison is then extended into a theoretical walk-through of an SMM treatment of concrete pavement in contrast with a CE treatment. With concrete being a ubiquitous in the world's buildings and roads, as well as being a major constituent of Construction & Demolition waste generated, its analysis is applicable to a significant portion of the world's material flow. The ultimate test of differentiation between SMM and CE would ask: 1) If SMM principles guided action, would the outcomes be aligned with or at odds with CE principles? and conversely 2) If CE principles guided action, would the outcomes be aligned with or at odds with SMM principles? Using concrete pavement as an example, this paper seeks to determine whether or not Sustainable Materials Management and Circular Economy are simply different roads leading to the same destination.
ContributorsAbdul-Quadir, Anisa (Author) / Kelman, Candice (Thesis director) / Buch, Rajesh (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
133580-Thumbnail Image.png
Description
In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In

In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In this system, an autonomous thrower will detect a desired target through the use of image processing. The launch angle and direction necessary to hit the target will then be calculated, followed by the launching of the ball. The smart catcher will then detect the ball as it is in the air, calculate its expected landing location based on its initial trajectory, and adjust its position so that the ball lands in the center of the target. The thrower will then proceed to compare the actual landing position with the position where it expected the ball to land, and adjust its calculations accordingly for the next throw. By utilizing this method of feedback, the throwing arm will be able to automatically correct itself. This means that the thrower will ideally be able to hit the target exactly in the center within a few throws, regardless of any additional uncertainty in the system. This project will focus of the controller and image processing components necessary for the autonomous throwing arm to be able to detect the position of the target at which it will be aiming, and for the smart catcher to be able to detect the position of the projectile and estimate its final landing position by tracking its current trajectory.
ContributorsLundberg, Kathie Joy (Co-author) / Thart, Amanda (Co-author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132909-Thumbnail Image.png
Description
This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used

This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used along with 3D printed plastic components and an electronic motor control board to develop a functional open-loop controlled gripper for use in collective transportation experiments. Code was developed that effectively acquired and filtered rate of rotation data alongside other code that allows for straightforward control of the DC motor through experimentally derived relationships between the voltage applied to the DC motor and the torque output of the DC motor. Additionally, several versions of the physical components are described through their development.
ContributorsMohr, Brennan (Author) / Berman, Spring (Thesis director) / Ren, Yi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132937-Thumbnail Image.png
Description
In the next decade or so, there will be a shift in the industry of transportation across the world. Already today we have autonomous vehicles (AVs) tested in the Greater Phoenix area showing that the technology has improved to a level available to the public eye. Although this technology is

In the next decade or so, there will be a shift in the industry of transportation across the world. Already today we have autonomous vehicles (AVs) tested in the Greater Phoenix area showing that the technology has improved to a level available to the public eye. Although this technology is not yet released commercially (for the most part), it is being used and will continue to be used to develop a safer future. With a high incidence of human error causing accidents, many expect that autonomous vehicles will be safer than human drivers. They do still require driver attention and sometimes intervention to ensure safety, but for the most part are much safer. In just the United States alone, there were 40,000 deaths due to car accidents last year [1]. If traffic fatalities were considered a disease, this would be an epidemic. The technology behind autonomous vehicles will allow for a much safer environment and increased mobility and independence for people who cannot drive and struggle with public transport. There are many opportunities for autonomous vehicles in the transportation industry. Companies can save a lot more money on shipping by cutting the costs of human drivers and trucks on the road, even allowing for simpler drop shipments should the necessary AI be developed.Research is even being done by several labs at Arizona State University. For example, Dr. Spring Berman’s Autonomous Collective Systems Lab has been collaborating with Dr. Nancy Cooke of Human Systems Engineering to develop a traffic testbed, CHARTopolis, to study the risks of driver-AV interactions and the psychological effects of AVs on human drivers on a small scale. This testbed will be used by researchers from their labs and others to develop testing on reaction, trust, and user experience with AVs in a safe environment that simulates conditions similar to those experienced by full-size AVs. Using a new type of small robot that emulates an AV, developed in Dr. Berman’s lab, participants will be able to remotely drive around a model city environment and interact with other AV-like robots using the cameras and LiDAR sensors on the remotely driven robot to guide them.
Although these commercial and research systems are still in testing, it is important to understand how AVs are being marketed to the general public and how they are perceived, so that one day they may be effectively adopted into everyday life. People do not want to see a car they do not trust on the same roads as them, so the questions are: why don’t people trust them, and how can companies and researchers improve the trustworthiness of the vehicles?
ContributorsShuster, Daniel Nadav (Author) / Berman, Spring (Thesis director) / Cooke, Nancy (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
153731-Thumbnail Image.png
Description
Interest in Micro Aerial Vehicle (MAV) research has surged over the past decade. MAVs offer new capabilities for intelligence gathering, reconnaissance, site mapping, communications, search and rescue, etc. This thesis discusses key modeling and control aspects of flapping wing MAVs in hover. A three degree of freedom nonlinear model is

Interest in Micro Aerial Vehicle (MAV) research has surged over the past decade. MAVs offer new capabilities for intelligence gathering, reconnaissance, site mapping, communications, search and rescue, etc. This thesis discusses key modeling and control aspects of flapping wing MAVs in hover. A three degree of freedom nonlinear model is used to describe the flapping wing vehicle. Averaging theory is used to obtain a nonlinear average model. The equilibrium of this model is then analyzed. A linear model is then obtained to describe the vehicle near hover. LQR is used to as the main control system design methodology. It is used, together with a nonlinear parameter optimization algorithm, to design a family multivariable control system for the MAV. Critical performance trade-offs are illuminated. Properties at both the plant output and input are examined. Very specific rules of thumb are given for control system design. The conservatism of the rules are also discussed. Issues addressed include

What should the control system bandwidth be vis--vis the flapping frequency (so that averaging the nonlinear system is valid)?

When is first order averaging sufficient? When is higher order averaging necessary?

When can wing mass be neglected and when does wing mass become critical to model?

This includes how and when the rules given can be tightened; i.e. made less conservative.
ContributorsBiswal, Shiba (Author) / Rodriguez, Armando (Thesis advisor) / Mignolet, Marc (Thesis advisor) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2015
154883-Thumbnail Image.png
Description
Robotic systems are outmatched by the abilities of the human hand to perceive and manipulate the world. Human hands are able to physically interact with the world to perceive, learn, and act to accomplish tasks. Limitations of robotic systems to interact with and manipulate the world diminish their usefulness. In

Robotic systems are outmatched by the abilities of the human hand to perceive and manipulate the world. Human hands are able to physically interact with the world to perceive, learn, and act to accomplish tasks. Limitations of robotic systems to interact with and manipulate the world diminish their usefulness. In order to advance robot end effectors, specifically artificial hands, rich multimodal tactile sensing is needed. In this work, a multi-articulating, anthropomorphic robot testbed was developed for investigating tactile sensory stimuli during finger-object interactions. The artificial finger is controlled by a tendon-driven remote actuation system that allows for modular control of any tendon-driven end effector and capabilities for both speed and strength. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. Next, attention was focused on real-time artificial perception for decision-making. A robotic system needs to perceive its environment in order to make decisions. Specific actions such as “exploratory procedures” can be employed to classify and characterize object features. Prior work on offline perception was extended to develop an anytime predictive model that returns the probability of having touched a specific feature of an object based on minimally processed sensor data. Developing models for anytime classification of features facilitates real-time action-perception loops. Finally, by combining real-time action-perception with reinforcement learning, a policy was learned to complete a functional contour-following task: closing a deformable ziplock bag. The approach relies only on proprioceptive and localized tactile data. A Contextual Multi-Armed Bandit (C-MAB) reinforcement learning algorithm was implemented to maximize cumulative rewards within a finite time period by balancing exploration versus exploitation of the action space. Performance of the C-MAB learner was compared to a benchmark Q-learner that eventually returns the optimal policy. To assess robustness and generalizability, the learned policy was tested on variations of the original contour-following task. The work presented contributes to the full range of tools necessary to advance the abilities of artificial hands with respect to dexterity, perception, decision-making, and learning.
ContributorsHellman, Randall Blake (Author) / Santos, Veronica J (Thesis advisor) / Artemiadis, Panagiotis K (Committee member) / Berman, Spring (Committee member) / Helms Tillery, Stephen I (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2016
155771-Thumbnail Image.png
Description
Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up approximately half of all projects in the infrastructure construction

Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up approximately half of all projects in the infrastructure construction sector (by count), the planning of these projects varies greatly, and that a consistent definition of “small infrastructure project” did not exist. This dissertation summarizes the motivations and efforts of Construction Industry Institute (CII) Research Team 314a to develop a non-proprietary front end planning tool specifically for small infrastructure projects, namely the Project Definition Rating Index (PDRI) for Small Infrastructure Projects. The author was a member of CII Research Team 314a, who was tasked with developing the tool in September 2015. The author, together with the research team, scrutinized and adapted an existing infrastructure-focused FEP tool, the PDRI for Infrastructure Projects, and other resources to develop a set of 40 specific elements relevant to the planning of small infrastructure projects. The author along with the research team supported the facilitation of seven separate industry workshops where 71 industry professionals evaluated the element descriptions and provided element prioritization data that was statistically analyzed and used to develop a corresponding weighted score sheet. The tool was tested on 76 completed and in-progress projects, the analysis of which showed that small infrastructure projects with greater scope definition (based on the tool’s scoring scheme) outperformed projects with lesser scope definition regarding cost performance, schedule performance, change performance, financial performance, and customer satisfaction. Moreover, the author found that users of the tool on in-progress projects agreed that the tool added value to their projects in a timeframe and manner consistent with their needs, and that they would continue using the tool in the future. The author also conducted qualitative and quantitative similarities and differences between PDRI – Infrastructure and PDRI – Small Infrastructure Projects in support of improved planning efforts for both types of projects. Finally, the author piloted a case study that introduced the PDRI into an introductory construction management course to enhance students’ learning experience.
ContributorsElZomor, Mohamed A (Author) / Parrish, Kristen (Thesis advisor) / Gibson, Jr., G. Edward (Committee member) / El Asmar, Mounir (Committee member) / Arizona State University (Publisher)
Created2017