Matching Items (5)
Filtering by

Clear all filters

157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy”

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

ContributorsAldaaja, Mohammad (Author) / El Asmar, Mounir (Thesis advisor) / Buch, Rajesh (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2019
134315-Thumbnail Image.png
Description
Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived

Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived as being interchangeable. This paper evaluates Sustainable Materials Management (SMM) and Circular Economy (CE) individually and in comparison to see how truly different these frameworks are from one another. This comparison is then extended into a theoretical walk-through of an SMM treatment of concrete pavement in contrast with a CE treatment. With concrete being a ubiquitous in the world's buildings and roads, as well as being a major constituent of Construction & Demolition waste generated, its analysis is applicable to a significant portion of the world's material flow. The ultimate test of differentiation between SMM and CE would ask: 1) If SMM principles guided action, would the outcomes be aligned with or at odds with CE principles? and conversely 2) If CE principles guided action, would the outcomes be aligned with or at odds with SMM principles? Using concrete pavement as an example, this paper seeks to determine whether or not Sustainable Materials Management and Circular Economy are simply different roads leading to the same destination.
ContributorsAbdul-Quadir, Anisa (Author) / Kelman, Candice (Thesis director) / Buch, Rajesh (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
137415-Thumbnail Image.png
Description
The following Student Sustainability Consultant's Portfolio was created with the intention of being duplicated and utilized by Arizona State University (ASU) students to build their own Portfolio and to help prepare them for success after graduation. Student Consultants in GreenLight Solutions (GLS) are in a unique position to prepare themselves

The following Student Sustainability Consultant's Portfolio was created with the intention of being duplicated and utilized by Arizona State University (ASU) students to build their own Portfolio and to help prepare them for success after graduation. Student Consultants in GreenLight Solutions (GLS) are in a unique position to prepare themselves to create value for organizations while in school, and then continue to after graduation. When I enrolled in the School of Sustainability as an undergraduate transfer student I heard some constructive criticism from graduates of the school. Those students shared that while they had attained a great theoretical understanding of the science of sustainability, they lacked the ability to apply their knowledge in a practical way. They were struggling with finding work in their field because they could not communicate to employers how their knowledge was useful. They did not know how to apply their sustainability knowledge to create value for an organization. I did not want to have that same problem when I graduated. Enter GreenLight Solutions.
ContributorsKeleher, Kevin Robert (Author) / Schoon, Michael (Thesis director) / Basile, George (Committee member) / Buch, Rajesh (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Department of Supply Chain Management (Contributor)
Created2013-12
133271-Thumbnail Image.png
Description
This thesis, done in a capstone course through the Arizona State University School of Sustainability, examines the current state of sustainability-related processes at all of Major League Baseball's Cactus League sites, with a focus on Salt River Fields. Through this close examination, a final report created of our findings and

This thesis, done in a capstone course through the Arizona State University School of Sustainability, examines the current state of sustainability-related processes at all of Major League Baseball's Cactus League sites, with a focus on Salt River Fields. Through this close examination, a final report created of our findings and suggestions were presented to executives from Major League Baseball and the two occupants of Salt River Fields: the Arizona Diamondbacks and the Colorado Rockies. The overall goal is to add value to Cactus League stadiums, clubs, and the fans while promoting sustainable initiatives and creating lasting change. With a team of 11 undergraduate and graduate students from ASU led by Colin Tetreault, research was conducted by examining similar efforts by major sports leagues and comparable organizations. Our team researched reports from organizations such as the National Hockey League to determine how we could implement our ideas on a large scale successfully. Determining that fan engagement is crucial to changing the culture and implementation of sustainability, we also researched ways to interact with fans on social media and cooperated with the social media teams from the Arizona Diamondbacks and the Colorado Rockies. Additionally, we visited every stadium in the Cactus League and met with representatives from each team to determine what sort of processes they have in place, if they have any suggestions or thoughts for our efforts, and we gave each of them advice as consultants. At each site, we also interviewed vendors, cleaning crews, and fans for more information. At Salt River Fields, we engaged the guest service attendants, social media team, vendors, the Jani King custodial team, and staff involved with operations for information and to suggest changes. We started a new initiative in cooperation with these entities known as the "Recycle Rally" where we engaged with fans about recycling information and collected their recyclables. Additionally, we surveyed fans on their personal views on sustainability at each game we attended. We also conducted two waste audits at Salt River Fields, where we examined a large sample size of waste, sorted all of it into categories, and weighed it on a scale to determine how much of each category of waste there was. This data was later plotted and analyzed.
ContributorsLassman, Matthew Joseph (Author) / Tetreault, Colin (Thesis director) / Benaza, Paesly (Committee member) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
158631-Thumbnail Image.png
Description
ABSTRACT

Historically, Life Cycle Assessments (LCA) guided companies to make better decisions to improve the environmental impacts of their products. However, as new Circular Economy (CE) tools emerge, the usefulness of LCA in assessing linear products grow more and more obsolete. Research Question: How do LCA-based tools account for reuse/multiple life

ABSTRACT

Historically, Life Cycle Assessments (LCA) guided companies to make better decisions to improve the environmental impacts of their products. However, as new Circular Economy (CE) tools emerge, the usefulness of LCA in assessing linear products grow more and more obsolete. Research Question: How do LCA-based tools account for reuse/multiple life cycles of products verses CE-based tools?

The Kaiteki Innovation Framework (KIF) was used to address the question of circularity of two packaging materials using an Environmental LCA to populate its 12 CE dimensions. Any gaps were evaluated with 2 LCA- based and 2 CE-based tools to see which could address the leftover CE dimensions.

Results showed that to complete the KIF template, LCA data required one of the LCA-based tools: Social Life Cycle Assessment (SLCA) and both CE-based tools: Circular Transition Indicators (CTI) and Material Circularity Indicator (MCI) to supplement gaps in the KIF. The LCA addressed 5 of the KIF dimensions: Innovation Category Name, Description, GHG Impact, Other Environmental Impacts, and Value Chain Position. 3 analytical tools addressed 5 more:: Effect on Circularity, Social Impacts, Enabling Technologies, Tier 2 and 3 Requirements, and Value Chain Synergies. None of the tools could address the KIF Dimensions: State of Development or Scale Requirements. All in all, the KIF required both LCA-based and CE-based tools to cover social and socio-economic impacts from a cradle-to-cradle perspective with multiple circular loops in mind. These results can help in the research and development of innovative, circular products that can lead to a more environmentally preferred future.
ContributorsDe Los Santos, Andrew John (Author) / Seager, Thomas (Thesis advisor) / Dooley, Kevin (Committee member) / Buch, Rajesh (Committee member) / Arizona State University (Publisher)
Created2020