Matching Items (3)
Filtering by

Clear all filters

148112-Thumbnail Image.png
Description

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual

Animals encounter information from different resources simultaneously, integrating input from multiple sensory systems before responding behaviorally. When different cues interact with one another, they may enhance, diminish, or have no impact on their responses. In this project, we test how the presence of chemical cues affect the perception of visual cues. Zebrafish (Danio rerio) often use both chemical cues and visual cues to communicate with shoal mates, to assess predation risk, and to locate food. For example, zebrafish rely on both olfactory cues and visual cues for kin recognition, and they frequently use both chemical and visual cues to search for and to capture prey. In zebrafish, the terminal nerve (TN) constitutes the olfacto-visual centrifugal pathway and connects the olfactory bulb with the retina, thus allowing olfactory perception also to activate visual receptors. Past studies have found that the presence of an olfactory cue can modulate visual sensitivity in zebrafish through the terminal nerve pathway. Alternatively, given that zebrafish are highly social, the presence of social chemical cues may distract individuals from responding to other visual cues, such as food and predator visual cues. Foraging and predator chemical cues, including chemical food cues and alarm cues, may also distract individuals from responding to non-essential visual cues. Here, we test whether the response to a visual cue either increases or decreases when presented in concert with alanine, an amino acid that represents the olfactory cues of zebrafish prey. We found that the presence of chemical cues did not affect whether zebrafish responded to visual cues, but that the fish took longer to respond to visual cues when chemical cues were also present. These findings suggest that different aspects of behavior could be affected by the interaction between sensory modalities. We also found that this impact of delayed response was significant only when the visual cue<br/>was weak compared to the strength of the chemical cue, suggesting that the salience of interacting cues may also have an influence on determining the outcomes of the interactions. Overall, the interactive effects of chemicals on an animal’s response to visual cues may also have wide-ranging impacts on behavior including foraging, mating, and evading predators, and the interaction of cues may affect different aspects of the same behavior.

ContributorsPuffer, Georgie Delilah (Author) / Martins, Emilia (Thesis director) / Suriyampola, Piyumika (Committee member) / Gerkin, Richard (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147559-Thumbnail Image.png
Description

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and fine motor control, as being strong predictors of the outcome of aggression. Here, I combined morphological and behavioral data to discover how these features interact during aggressing interactions in male virile crayfish, Faxonius virilis. I predicted that individual variation in behavioral skill for decision making (i.e., number of strikes thrown), would determine the outcome of contest success in addition to morphological measurements (e.g. body size, relative claw size). To evaluate this prediction, I filmed staged territorial interactions between male F. virilis and later analyzed trial behaviors (e.g. strike, pinches, and bout time) and aggressive outcomes. I found very little support for skill to predict win/loss outcome in trials. Instead, I found that larger crayfish engaged in aggression for longer compared to smaller crayfish, but that larger crayfish did not engage in a greater number of claw strikes or pinches when controlling for encounter duration. Future studies should continue to investigate the role of skill, by using finer-scale techniques such as 3D tracking software, which could track advanced measurements (e.g. speed, angle, and movement efficiency). Such studies would provide a more comprehensive understanding of the relative influence of fighting skill technique on territorial contests.

ContributorsNguyen, Phillip Huy (Author) / Angilletta, Michael (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131267-Thumbnail Image.png
Description
Dementia is a collective term used to describe symptoms of cognitive impairment in learning and memory. The most prevalent form of dementia is Alzheimer’s disease (AD). In order to understand the pathological mechanisms associated with AD, animal models have been created. These various mouse models replicate the pathology found in

Dementia is a collective term used to describe symptoms of cognitive impairment in learning and memory. The most prevalent form of dementia is Alzheimer’s disease (AD). In order to understand the pathological mechanisms associated with AD, animal models have been created. These various mouse models replicate the pathology found in humans with AD. As a consequence of the fact that this disease impairs cognitive abilities in humans, testing apparatuses have been developed to measure impaired cognition in animal models. One of the most common behavioral apparatuses that has been in use for nearly 40 years is the Morris water maze (MWM). In the MWM, animals are tasked to find a hidden platform in a pool of water and thereby are subjected to stress that can unpredictably influence cognitive performance. In an attempt to circumvent such issues, the IntelliCage was designed to remove the external stress of the human experimenter and provide a social environment during task assessment which is fully automated and programable. Additionally, the motivation is water consumption, which is less stressful than escaping a pool. This study examined the difference in performance of male and female cohorts of APP/PS1 and non-transgenic (NonTg) mice in both the MWM and the IntelliCage. Initially, 12-month-old male and female APP/PS1 and NonTg mice were tested in the hippocampal-dependent MWM maze for five days. Next, animals were moved to the IntelliCage and underwent 39 days of testing to assess prefrontal cortical and hippocampal function. The results of this experiment showed significant sex differences in task performance, but inconsistency between the two testing paradigms. Notably, males performed significantly better in the MWM, which is consistent with prior research. Interestingly however, APP/PS1 females showed higher Amyloid-β plaque load and performed significantly better in the more complex tasks of the IntelliCage. This suggests that Aβ plaque load may not directly contribute to cognitive deficits, which is consistent with recent reports in humans with AD. Collectively, these results should inform scientists about the caveats of behavioral paradigms and will aid in determining translation to the human condition.
ContributorsMifflin, Marc Anthony (Author) / Velazquez, Ramon (Thesis director) / Mastroeni, Diego (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05