Matching Items (7)
Filtering by

Clear all filters

133732-Thumbnail Image.png
Description
As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to preserve the sanctity of terrestrial and marine life. The IUCN

As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to preserve the sanctity of terrestrial and marine life. The IUCN Red List of Threatened Species informs the conservation activities of governments as a world standard of species' risks of extinction. However, the IUCN's current methodology is, in some ways, inefficient given the immense volume of Earth's species and the laboriousness of its species' risk classification process. IUCN assessors can take years to classify a species' extinction risk, even as that species continues to decline. Therefore, to supplement the IUCN's classification process and thus bolster conservationist efforts for threatened species, a Random Forest model was constructed, trained on a group of fish species previously classified by the IUCN Red List. This Random Forest model both validates the IUCN Red List's classification method and offers a highly efficient, supplemental classification method for species' extinction risk. In addition, this Random Forest model is applicable to species with deficient data, which the IUCN Red List is otherwise unable to classify, thus engendering conservationist efforts for previously obscure species. Although this Random Forest model is built specifically for the trained fish species (Sparidae), the methodology can and should be extended to additional species.
ContributorsWoodyard, Megan (Author) / Broatch, Jennifer (Thesis director) / Polidoro, Beth (Committee member) / Mancenido, Michelle (Committee member) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Mathematical and Natural Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133771-Thumbnail Image.png
Description
Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how

Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how individuals interact with their environment. A behavioral syndrome describes consistent individual differences in behaviors that are correlated across different behavioral contexts or situations. Understanding the Western Black Widow's behavioral responses to the urban heat island effect has important implications for the control of a pest species. In this study, the relationship between rising urban temperatures and voracity, web-building, and cannibalism behaviors of juvenile Western Black Widows was examined. Spiders raised in the urban temperature treatment were predicted to have more aggressive behavioral syndromes, characterized by shorter latencies to forage, greater web-building activity, and shorter latencies to cannibalize as compared to spiders raised in rural or intermediate temperature treatments. A correlation between the latency to attack the first fly and second fly was found, however there were no other correlations evidencing a behavioral syndrome. Temperature was found to affect foraging, web-building, and cannibalism behaviors where spiders in urban areas demonstrated increased activity in all behavioral contexts. The possession of behavioral plasticity rather than a behavioral syndrome is likely what allows Black Widows to be successful urban pests.
ContributorsGarver, Emily Elizabeth (Author) / Johnson, James Chadwick (Thesis director) / Foltz-Sweat, Jennifer (Committee member) / Kitchen, Kathryn (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
147559-Thumbnail Image.png
Description

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and fine motor control, as being strong predictors of the outcome of aggression. Here, I combined morphological and behavioral data to discover how these features interact during aggressing interactions in male virile crayfish, Faxonius virilis. I predicted that individual variation in behavioral skill for decision making (i.e., number of strikes thrown), would determine the outcome of contest success in addition to morphological measurements (e.g. body size, relative claw size). To evaluate this prediction, I filmed staged territorial interactions between male F. virilis and later analyzed trial behaviors (e.g. strike, pinches, and bout time) and aggressive outcomes. I found very little support for skill to predict win/loss outcome in trials. Instead, I found that larger crayfish engaged in aggression for longer compared to smaller crayfish, but that larger crayfish did not engage in a greater number of claw strikes or pinches when controlling for encounter duration. Future studies should continue to investigate the role of skill, by using finer-scale techniques such as 3D tracking software, which could track advanced measurements (e.g. speed, angle, and movement efficiency). Such studies would provide a more comprehensive understanding of the relative influence of fighting skill technique on territorial contests.

ContributorsNguyen, Phillip Huy (Author) / Angilletta, Michael (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

There is no possibility for an ecological crisis without someone to be in crisis. The environment is not in danger as such, humanity’s ability to persist in it with well-being is. Thus, the ecological crisis is a human crisis, a crisis of meaning. Although ecology is required to understand and

There is no possibility for an ecological crisis without someone to be in crisis. The environment is not in danger as such, humanity’s ability to persist in it with well-being is. Thus, the ecological crisis is a human crisis, a crisis of meaning. Although ecology is required to understand and address these problems, we must understand the human condition if we wish to address them with any amount of seriousness or hope for success. We will be concerned with the relevance of hermeneutic practices in the study and practice of ecology. By hermeneutic practices, I mean the practices central to the human condition of world-building through perpetual interpretation and re-interpretation informed by one’s facticity. By the study and practice of ecology, I mean the education of ecology’s concepts within a scholastic, primarily university, setting and the usage of said concepts for the purpose of research or societal development respectively. I will argue that the study and practice of ecology would benefit from an inclusion of hermeneutics into its study in the scholastic system by way of developing nuanced understandings of oneself and their relation to the environment, thereby revealing new horizons of possibility in decision-making in society regarding the environment and oneself. To do this, I begin by using hermeneutic strategies in a reading of Gilgamesh to draw comparisons between Gilgamesh’s journey and the development of human society’s relationship to progress. Juxtaposing the concerns posited by the hermeneutic reading of Gilgamesh with Neil Postman’s claim that our contemporary understanding of the world is helpfully understood as what he calls a “Technopoly,” I argue technology has altered our orientation towards the environment in a way that falsely suggests hermeneutics has no place in ecology or any science. Exploring passages from Martin Heidegger, I then argue how humans’ fundamental relationship to interpretation makes hermeneutics the ground from which ecology is able to rise from. Further exploring passages from Heidegger’s work and exploring the etymology of the words “preserve” and “beforehand,” I argue that not only does hermeneutics allow for the study of ecology, but by studying ecology without it we are left in a state prime for mis-handling the Earth, thus making hermeneutics a crucial part of an education in ecology. I close by providing an example of using hermeneutic practices on two essays by Ralph Waldo Emerson to display how these hermeneutic practices could be used in conjunction with an education in ecology and illustrate the benefits therein.

ContributorsRusnak, Jared (Author) / Ramsey, Ramsey (Thesis director) / Poll, Elise (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor)
Created2023-05
Description
The use of genetic management in conservation has sparked much debate around the ethical and environmental impacts of the plans. A case study on the conservation of leopard frogs in Arizona was analyzed to better understand the benefits and issues surrounding genetic management plans. The first part of the case

The use of genetic management in conservation has sparked much debate around the ethical and environmental impacts of the plans. A case study on the conservation of leopard frogs in Arizona was analyzed to better understand the benefits and issues surrounding genetic management plans. The first part of the case focuses on the recent management plan for Chiricahua Leopard Frogs implemented by the Arizona Game and Fish Department. The goal of the plan is to better understand the genetic dynamics of the established Chiricahua Leopard Frog populations to develop a more effective management plan. The second part of the case focuses on the Arizona Game and Fish Department’s management of the Northern Leopard Frog. There was little success with the initial breed and release program of the native species, however a nonnative subspecies of Northern Leopard Frog was able to establish a thriving population. This case study exemplifies the many complications with genetic management plans and the importance of careful assessment of options when deciding on a genetic management plan. Despite the complexity of genetic management plans, it is an important method to consider when discussing the conservation of a species.
ContributorsTurpen, Alexa (Author) / Murphree, Julie (Thesis director) / Collins, James (Thesis director) / Owens, Audrey (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2024-05
131787-Thumbnail Image.png
Description
I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance

I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance in several genetic lines of Drosophila melanogaster. I hypothesized that genotypes that can fly better at high temperatures are also able to fly well at hypoxia. Genotypes from the Drosophila Genetic Reference Panel (DGRP) were assessed for flight at hypoxia and normal temperature (12% O2 and 25°C) as well as normoxia and high temperature (21% O2 and 39°C). After testing 66 lines from the DGRP, the oxygen- and capacity-limited thermal tolerance theory is supported; hypoxia-resistant lines are more likely to be heat-resistant. This supports previous research, which suggested an interaction between the tolerance of the two environmental variables. I used this data to perform a genome-wide association study to find specific single-nucleotide polymorphisms associated with heat tolerance and hypoxia tolerance but found no specific genomic markers. Understanding factors that limit an organism’s stress tolerance as well as the regions of the genome that dictate this phenotype should enable us to predict how organisms may respond to the growing threat of climate change.
ContributorsFredette-Roman, Jacob Daniel (Author) / Angilletta, Michael (Thesis director) / VandenBrooks, John (Committee member) / Youngblood, Jacob (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131551-Thumbnail Image.png
Description
The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related

The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related Ae. albopictus are the primary vectors of the arboviral diseases chikungunya, Zika, yellow fever and dengue. Ae. aegypti tends to blood feed multiple times per gonotrophic cycle (cycle of feeding and egg laying) which, alongside a preference for human blood and close association with human habitation, contributes to an increased risk of Ae. aegypti borne virus transmission (Scott & Takken, 2012). Between 2010-2017, 153 travel-associated cases of dengue were reported in the whole of Arizona (Rivera et al., 2020); while there have been no documented locally transmitted cases of Aedes borne diseases in Maricopa county, there are no apparent reasons why local transmission can’t occur in the future via local Aedes aegypti mosquitoes infected after feeding from travelling viremic hosts. Incidents of local dengue transmission in New York (Rivera et al., 2020) and Barcelona (European Center for Disease Control [ECDC], 2019) suggest that outbreaks of Aedes borne arbovirus’ can occur in regions more temperate than the current endemic range of Aedes borne diseases. Further, while the fact that Ae. aegypti eggs have a high mortality rate when exposed to cold temperatures limits the ability for Ae aegypti to establish stable breeding populations in temperate climates (Thomas, Obermayr, Fischer, Kreyling, & Beierkuhnlein, 2012), global increases in temperature will expand the possible ranges of Ae aegypti and Aedes borne diseases.
ContributorsHon, Ruiheng (Author) / Paaijmans, Krijn (Thesis director) / Bond, Angela (Committee member) / Angilletta, Michael (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05