Matching Items (3)
Filtering by

Clear all filters

149657-Thumbnail Image.png
Description
The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to

The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to predict potential problems associated with the newly revised standard. The Toledo CBSA is home to two oil refineries, a glass making industry, several coal fired lime kilns, and a sulfuric acid regeneration plant, The CBSA 3 has coal fired power plants within a 30 mile radius of its center. Additionally, Toledo is a major Great Lakes shipping port visited by both lake and ocean going vessels. As a transportation hub, the area is also traversed by several rail lines which feed four rail switching yards. Impacts of older generation freighters, or "steamers", utilizing high sulfur "Bunker C" fuel oil in the area is also an issue. With the unique challenges presented by an SO2 one hour standard, this study attempted to estimate potential problem areas in advance of any monitoring data being gathered. Based on the publicly available data as inputs, it appears that a significant risk of non-attainment may exist in the Toledo CBSA. However, future on-the-books controls and currently proposed regulatory actions appear to drive the risk below significance by 2015. Any designation as non-attainment should be self-correcting and without need for controls other than those used in these models. The outcomes of this screening study are intended for use as a basis for assessments for other mid-sized, industrial areas without SO2 monitors. The results may also be utilized by industries and planning groups within the Toledo CBSA to address potential issues in advance of monitoring system deployment to lower the risk of attaining long term or perpetual non-attainment status.
ContributorsMyers, Greg Francis (Author) / Olson, Larry (Thesis advisor) / Edwards, David (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
Description
This study examines the linkage between surface level ozone and planetary boundary layer meteorological variables in the Phoenix Metropolitan region during the summer North American Monsoon period for years 2010 through 2020. Data used in this study was obtained and derived from both 1200 UTC radiosonde observations launched from the

This study examines the linkage between surface level ozone and planetary boundary layer meteorological variables in the Phoenix Metropolitan region during the summer North American Monsoon period for years 2010 through 2020. Data used in this study was obtained and derived from both 1200 UTC radiosonde observations launched from the Phoenix National Weather Service office, and 8-hour average ozone concentration measurements from Maricopa County monitoring stations. Specific boundary layer meteorological variables examined in this study included inversion temperature, mixing level pressure, mixing level height, and the surface level variables of temperature, dew point temperature, pressure, wind speed, and meridional and zonal wind directions. The daily maximum, 8-hour average ozone concentrations among all Maricopa County monitoring stations were used in this study. To determine ozone’s linkage to meteorological variables, normality tests, determination of Pearson product moment correlation coefficient and/or the Spearman rank correlation coefficient, and the discriminative Student’s two-sided t-test statistic between ozone exceedance and non-exceedance days were used. Statistically significant coefficients indicate weak negative correlations between surface level ozone and surface level pressure, and mixing level pressure, and weak positive correlations between surface level ozone and surface level temperature, surface level zonal wind direction, mixing level height, and inversion temperature. These correlations were linear for surface level pressure, surface level temperature, and inversion temperature. The two-sided Student’s t-test statistic indicates a significant difference in the mean on ozone exceedance and non-exceedance days for surface level temperature, and the upper-air variables of mixing level height, mixing level pressure, and inversion temperature. Both correlations and differences in the mean of upper-air variables showed statistically significant results. These findings suggest that further research should be completed to determine the forecasting ability of morning sounding analyses on surface level ozone in locations exhibiting similar emissions and geographic features as the Phoenix Valley.
ContributorsLopez, David (Author) / Cerveny, Randall (Thesis director) / Balling, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Music, Dance and Theatre (Contributor) / Department of Physics (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2023-05
126620-Thumbnail Image.png
Description
Description
By avoiding vehicle idling for three minutes every day of the year can reduce 1.4 million metric tons annually, which is equivalent to taking 320,000 cars off the road for the entire year (Canada.ca, 2016). The Automobile Idle Reduction Program (AIRP) is an outreach initiative to prevent carbon emissions from

Description
By avoiding vehicle idling for three minutes every day of the year can reduce 1.4 million metric tons annually, which is equivalent to taking 320,000 cars off the road for the entire year (Canada.ca, 2016). The Automobile Idle Reduction Program (AIRP) is an outreach initiative to prevent carbon emissions from being released into the air by automobiles idling in Maricopa County. The initiative establishes a campaign to promote behavioral changes that target high idling industries: freight and delivery, schools and drive- thru facilities.

Background
Globally, carbon emissions negatively alter the air we breathe and is a leading cause in climate change. These problems adversely affect the global environment and human health. Additionally, they have cancer causing agents in the particulate matter. Unfortunately, over the years, Maricopa County has failed to meet air quality standards for particulate matter pollution which effects the health of residents. By not meeting the air quality standards, Maricopa County can receive sanctions and the Environmental Protection Agency can reject Arizona’s State Implementation Plan. This looming threat can financially impinge the economy of Maricopa County, potentially costing taxpayers a substantial increase in taxes.

Strategy and Solution
To battle the creation of carbon emissions and particulate matter, AIRP has developed a strategy for each industry. In partnership with the Maricopa County Air Quality Department, AIRP will introduce the freight and delivery companies to the Diesel Emission Reduction Act (DERA) Grant promotion to facilitate and fiscally assist with changing older diesel engines into higher efficiency engines that burn cleaner. Provide educators a fifth to eighth grade state approved education program to teach students the importance of vehicle idling reduction at no cost. And work with community organizations to offer a discount at their stores for those patrons who choose to turn their engine off and order inside, rather than idling in the drive-thru facilities. The campaign will market the interest of AIRP to the general public through purposefully placed billboards, light rail wraps, social media pushes, handouts and vinyl stickers.
ContributorsWeston-Smith, Kristen (Writer of accompanying material)
Created2020-05-13