Matching Items (4)
Filtering by

Clear all filters

156531-Thumbnail Image.png
Description
Nanomaterials (NMs), implemented into a plethora of consumer products, are a potential new class of pollutants with unknown hazards to the environment. Exposure assessment is necessary for hazard assessment, life cycle analysis, and environmental monitoring. Current nanomaterial detection techniques on complex matrices are expensive and time intensive, requiring weeks of

Nanomaterials (NMs), implemented into a plethora of consumer products, are a potential new class of pollutants with unknown hazards to the environment. Exposure assessment is necessary for hazard assessment, life cycle analysis, and environmental monitoring. Current nanomaterial detection techniques on complex matrices are expensive and time intensive, requiring weeks of sample preparation and detection by specialized equipment, limiting the feasibility of large-scale monitoring of NMs. A need exists to develop a rapid pre-screening technique to detect, within minutes, nanomaterials in complex matrices. The goal of this dissertation is to develop a tiered process to detect and characterize nanomaterials in consumer products and environmental samples. The approach is accomplished through a two tier rapid screening process to screen likely presence/absence of elements present in common nanomaterials at environmentally relevant concentrations followed by a more intensive three tier characterization process, if nanomaterials are likely to occur. The focus is on SiO2 and TiO2 nanomaterials with additional work performed on hydroxyapatite (Ca5(PO4)3(OH)). The five step tiered process is as follows: 1) screen for elements in the sample by laser induced breakdown spectroscopy (LIBS) and X-ray fluorescence (XRF), 2) extract nanomaterials from the sample and screen for extracted elements by LIBS and XRF, 3) confirm presence and elemental composition of nanomaterials by transmission electron microscopy paired with energy dispersive X-ray spectroscopy, 4) quantify the elemental composition of the sample by inductively coupled plasma – mass spectrometry, and 5) identify mineral phase of crystalline material by X-ray diffraction. This dissertation found LIBS to be an accurate method to detect Si and Ti in food matrices (tier one approach) with strong agreement with the product label, detecting Si and Ti in 93% and 89% of the samples labeled as containing each material, respectively. In addition XRF identified Ti, Si, and Ca in 100% of food samples TEM-confirmed to contain Ti, Si, and Ca respectively. As a tier two approach, LIBS on the 0.2 micrometer filter identified nano silicon in 42% of samples confirmed by TEM to contain nano Si and 67% of TEM-confirmed samples to contain Ti. XRF identified Si, Ti, and Ca loaded on to a 0.1 µm filter and Ti in the surfactant rich phase of CPE of water and water with NOM.
ContributorsSchoepf, Jared (Author) / Westerhoff, Paul (Thesis advisor) / Dai, Lenore (Committee member) / Hristovski, Kiril (Committee member) / Herckes, Pierre (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2018
149657-Thumbnail Image.png
Description
The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to

The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to predict potential problems associated with the newly revised standard. The Toledo CBSA is home to two oil refineries, a glass making industry, several coal fired lime kilns, and a sulfuric acid regeneration plant, The CBSA 3 has coal fired power plants within a 30 mile radius of its center. Additionally, Toledo is a major Great Lakes shipping port visited by both lake and ocean going vessels. As a transportation hub, the area is also traversed by several rail lines which feed four rail switching yards. Impacts of older generation freighters, or "steamers", utilizing high sulfur "Bunker C" fuel oil in the area is also an issue. With the unique challenges presented by an SO2 one hour standard, this study attempted to estimate potential problem areas in advance of any monitoring data being gathered. Based on the publicly available data as inputs, it appears that a significant risk of non-attainment may exist in the Toledo CBSA. However, future on-the-books controls and currently proposed regulatory actions appear to drive the risk below significance by 2015. Any designation as non-attainment should be self-correcting and without need for controls other than those used in these models. The outcomes of this screening study are intended for use as a basis for assessments for other mid-sized, industrial areas without SO2 monitors. The results may also be utilized by industries and planning groups within the Toledo CBSA to address potential issues in advance of monitoring system deployment to lower the risk of attaining long term or perpetual non-attainment status.
ContributorsMyers, Greg Francis (Author) / Olson, Larry (Thesis advisor) / Edwards, David (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
149672-Thumbnail Image.png
Description
The release of organophosphorus compounds (OPs) and subsequent exposure to these compounds is of concern to humans and the environment. The goal of this work was to control the concentrations of gaseous OPs through interaction with sorbent oxides. Experimental and computational methods were employed to assess the interactions

The release of organophosphorus compounds (OPs) and subsequent exposure to these compounds is of concern to humans and the environment. The goal of this work was to control the concentrations of gaseous OPs through interaction with sorbent oxides. Experimental and computational methods were employed to assess the interactions of dimethyl phosphite (DMHP), dimethyl methylphosphonate (DMMP), dimethyl ethylphosphonate (DMEP), diethyl ethylphosphonate (DEEP), and triethyl phosphate (TEP) with amorphous silica (a-silica), ã-alumina, and monoclinic zirconia (m-zirconia) for applications in air pollution control. Interactions of the selected OPs with a-silica were chosen as a baseline to determine the applicability of the computational predictions. Based on the a-silica results, computational methods were deemed valid for predicting the trends among materials with comparable interactions (e.g. -OH functionality of a-silica interacting with the phosphonyl O atoms of the OPs). Computational evaluations of the interactions with the OPs were extended to the oxide material, m-zirconia, and compared with the results for ã-alumina. It was hypothesized that m-zirconia had the potential to provide for the effective sorption of OPs in a manner superior to that of the a-silica and the ã-alumina surfaces due to the surface charges of the zirconium Lewis acid sites when coordinated in the oxidized form. Based on the computational study, the predicted heats of adsorption for the selected OPs onto m-zirconia were more favorable than those that were predicted for ã-alumina and a-silica. Experimental studies were carried out to confirm these computational results. M-zirconia nanoparticles were synthesized to determine if the materials could be utilized for the adsorption of the selected OPs. M-zirconia was shown to adsorb the OPs, and the heats of adsorption were stronger than those determined for commercial samples of a-silica. However, water interfered with the adsorption of the OPs onto m-zirconia, thus leading to heats of adsorption that were much weaker than those predicted computationally. Nevertheless, this work provides a first investigation of m-zirconia as a viable sorbent material for the ambient control of the selected gaseous OPs. Additionally, this work represents the first comparative study between computational predictions and experimental determination of thermodynamic properties for the interactions of the selected OPs and oxide surfaces.
ContributorsSiu, Eulalia Yuen-Yi (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica S (Committee member) / Hristovski, Kiril (Committee member) / Nielsen, David R (Committee member) / Pfeffer, Robert (Committee member) / Arizona State University (Publisher)
Created2011
126620-Thumbnail Image.png
Description
Description
By avoiding vehicle idling for three minutes every day of the year can reduce 1.4 million metric tons annually, which is equivalent to taking 320,000 cars off the road for the entire year (Canada.ca, 2016). The Automobile Idle Reduction Program (AIRP) is an outreach initiative to prevent carbon emissions from

Description
By avoiding vehicle idling for three minutes every day of the year can reduce 1.4 million metric tons annually, which is equivalent to taking 320,000 cars off the road for the entire year (Canada.ca, 2016). The Automobile Idle Reduction Program (AIRP) is an outreach initiative to prevent carbon emissions from being released into the air by automobiles idling in Maricopa County. The initiative establishes a campaign to promote behavioral changes that target high idling industries: freight and delivery, schools and drive- thru facilities.

Background
Globally, carbon emissions negatively alter the air we breathe and is a leading cause in climate change. These problems adversely affect the global environment and human health. Additionally, they have cancer causing agents in the particulate matter. Unfortunately, over the years, Maricopa County has failed to meet air quality standards for particulate matter pollution which effects the health of residents. By not meeting the air quality standards, Maricopa County can receive sanctions and the Environmental Protection Agency can reject Arizona’s State Implementation Plan. This looming threat can financially impinge the economy of Maricopa County, potentially costing taxpayers a substantial increase in taxes.

Strategy and Solution
To battle the creation of carbon emissions and particulate matter, AIRP has developed a strategy for each industry. In partnership with the Maricopa County Air Quality Department, AIRP will introduce the freight and delivery companies to the Diesel Emission Reduction Act (DERA) Grant promotion to facilitate and fiscally assist with changing older diesel engines into higher efficiency engines that burn cleaner. Provide educators a fifth to eighth grade state approved education program to teach students the importance of vehicle idling reduction at no cost. And work with community organizations to offer a discount at their stores for those patrons who choose to turn their engine off and order inside, rather than idling in the drive-thru facilities. The campaign will market the interest of AIRP to the general public through purposefully placed billboards, light rail wraps, social media pushes, handouts and vinyl stickers.
ContributorsWeston-Smith, Kristen (Writer of accompanying material)
Created2020-05-13